8 juillet 2020 | Local, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

Canada restricts military exports to Hong Kong

Canada restricts military exports to Hong Kong

Dear members,

On July 3, 2020, the Government of Canada announced it will review applications for the export of “sensitive military items” or “sensitive goods” destined to Hong Kong with the same considerations as it does for those items destined for the People's Republic of China.

Whether or not to approve a permit will now be a case-by-case political decision taken by the Minister of Foreign Affairs. What constitutes “sensitive military items” and “sensitive goods” will be determined by Global Affair Canada (GAC), on a case-by-case basis, from items that are found on any of the seven Export Control Group Lists (ECL). Permits for what are considered "sensitive military items" will not be approved.

While Canadian firms have exported very little in the way of ECL Group 2 items to Hong Kong in recent years, these changes appear to create a high level of regulatory risk for companies considering new business opportunities that would require exporting items found on the Export Control Group Lists. You are encouraged to review your business development plans and reconsider accordingly.

You can read the details of the:

  • July 3 Statement here. (link: canada.ca/en/global-affairs/news/2020/07/canada-takes-action-following-passage-of-national-security-legislation-for-hong-kong.html)
  • July 7 Notice to Exporters (Serial No. 1003) here. (link: international.gc.ca/trade-commerce/controls-controles/notices-avis/1003.aspx?lang=eng)
  • Canada's Export Control Group Lists (ECL) here. (link: international.gc.ca/controls-controles/about-a_propos/expor/guide-2018.aspx?lang=eng)

CADSI is working with GAC to inform impacted companies. If you have any questions, please contact your GAC Permit Officer and let CADSI know of any impacts on your company by emailing Mindy Pearce, Policy Advisor: mindy@defenceandsecurity.ca.

Sur le même sujet

  • Major upgrades incoming for Canada’s fleet of CF-188 Hornets

    19 juin 2020 | Local, Aérospatial

    Major upgrades incoming for Canada’s fleet of CF-188 Hornets

    You can pick your own term. Generation 4.2? Gen 4.3? However you choose to define the upgraded Royal Canadian Air Force (RCAF) CF-188 Hornet, the fighter jet will have “operational parity” in a complex operating environment until the early 2030s. “It's not Gen 4, but it's not a true Gen 4.5 like the (F/A-18E/F) Super Hornet. It will be somewhere between there,” said BGen Todd Balfe, a CF-188 pilot and special advisor to the Fighter Capability Office. “The term we use is, it brings us to operational parity against current threats. That is an implicit statement recognizing we don't have operational parity right now. And that supports our [objective] of bridging towards the future fighter.” Under a program known as the Hornet Extension Project (HEP), the Air Force will upgrade its entire fleet of 94 aircraft to meet international aviation regulations and ensure interoperability with the United States and other allies, including NATO. It will also enhance the combat capability of 36 jets to operate globally against current threats. The program addresses what the RCAF is calling quantitative and qualitative capability gaps. The delivery and upgrade of 18 operational Australian F/A-18A Hornets, which will expand the current fleet of 76 to 94, gives the Air Force the necessary quantity to meet concurrent NORAD and NATO obligations. Upgrading the sensors, weapons, countermeasures and mission support of approximately two squadrons worth of fighters will resolve the qualitative concern. Previously two distinct projects to comply with changing civil aviation regulations and allied capabilities and to modernize combat capability, HEP will be completed in two phases. The first phase, set to begin shortly on all 94 Hornets, will include automatic dependent surveillance-broadcast (ADS-B) to replace the current transponder, Honeywell GPS/INS systems, Collins Aerospace AN/ARC-210 RT-2036 (Gen 6) radios, airborne Joint Tactical Radios, upgrades to the Lockheed Martin sniper targeting pod, enhanced mission computers and data transfer units, and software updates for the Advanced Distributed Combat Training System (ADCTS) for networked flight simulation exercises. “It will allow the aircraft to operate in civil airspace out to 2032, but more importantly ... to interoperate with allies,” said Balfe. “Our NATO allies and our U.S. allies are upgrading the interoperability standards on all their fleets of aircraft.” The second phase, to be completed on the 36 Hornets with the most remaining operational life, will follow shortly after. Though select weapons and sensor systems were upgraded prior to Operation Impact over Iraq and Syria in 2014 and 2015, the CF-188 has not had a major overhaul of its combat capability for almost 15 years, Balfe acknowledged. The most significant enhancement will be to the sensing capability, in particular the radar. The Air Force will replace the AN/APG-73 mechanically scanned radar, a multimode airborne radar system developed in the 1980s by Hughes Aircraft, now Raytheon, with a vastly improved APG-79(V)4 Active Electronically Scanned Array (AESA) radar, now standard on so-called fifth generation fighters and many allied upgraded fourth generation aircraft. “An AESA radar gives you much greater detection, less probability of being detected, and more capability to track and identify airborne and even surface targets,” said Balfe. “It is a scaled down version of the radar that is in the Super Hornet.” The Fighter Capability Office looked across allied F-18 operators for examples and “quickly landed upon the U.S. Marine Corps,” which operates a C variant of the Hornet, he said. “They have embarked upon a very similar upgrade path ... so much of the engineering effort has already been done. We will partner with the Marine Corps and put that in our aircraft.” The Hornets will also receive a new F/A-18A Wide Band RADOME to “be able to accommodate the full capability of the AESA radar,” he added. The new weapons package will include the Sidewinder AIM-9X Block II air-to-air short-range missile, the AIM-120D advanced medium range air-to-air missile, and the AGM-154 Joint Standoff Weapon (JSOW), an air-to-surface glide bomb with an unclassified published range of at least 100 kilometres “All the weapons are currently integrated on Marine Corps F-18s” and are used by select NATO allies, noted Balfe. “They are a significant increase in capability and survivability for our pilots.” Given the age of the Hornets, which were designed in the 1970s and produced in the 1980s, there would be limited value in modifying the airframe or enhancing the electronic warfare system to further increase survivability — the RCAF is anticipating about seven years of service life once the upgrades are completed in 2025. But the Air Force will add new expendable chaff and flare, the ADM-141C Improved Tactical Air-Launched Decoys, and an Automatic Ground Collision Avoidance System (Auto GCAS). “The system was not technically feasible before,” said Balfe. “It is now. The Marine Corps has found a solution.” Lastly, the RCAF will expand mission support and security with a new Joint Mission Planning System (JMPS) and security upgrades to portable, temporary secure facilities to conduct simulated weapons training and mission planning for pilots. “These new weapons come with a higher level of security,” he said, noting that the CF-188 operates at secret or below while newer fighters require top secret level classification. Though the enhanced combat capability might not match that of a true Gen 4.5 or greater aircraft, it will serve as a “transition activity” to the future fighter, which remains “on track,” said MGen Michel Lalumiere, chief of Fighter Capability. The government still expects to award a contract in 2022 for 88 advanced fighter jets to replace the current Hornet fleet, despite twice adjusting the request for proposals deadline, now set for July 31, and the challenges of coordinating paperwork and other activity among the Fighter Capability Office, the Air Force, other government departments and the three contending companies while working remotely during the coronavirus pandemic. Balfe suggested the combat systems introduced during HEP Phase 2, many of the which will be the same or similar on the future fighter, “will enable us to begin the transition of our people, our mindset, our procedures and our way of thinking for the capabilities that are going to come with the future fighter. We think HEP is a great bridge toward that path.” While data from the various sensors will still be “fused” by the pilot rather than an onboard computer, systems in CF-188, the enhanced sensing and data transfer will mean a clearer operating picture among RCAF pilots that can be shared to a degree with allies. “It will bring our pilots into a different level,” he said. One key approval milestone was reached on June 16 when the U.S. State Department approved the possible military sale to Canada of the AESA radar along with technical and logistics support, the RADOME, radios, data transfer units, the various missiles and tactical guidance units, the ADCTS, Auto GCAS, JMPS and other systems for an estimated US$862.3 million, according to the Defense Security Cooperation Agency. The combined HEP program is estimated to cost about $1.3 billion. The Air Force is anticipating an initial operating capability of six Hornets through both Phase 1 and 2 in 2023. Full operational capability of the entire 94 aircraft is expected in 2025. “We are doing this very rapidly,” noted Balfe. That timeline includes the introduction of 18 Australian flyable aircraft as well as delivery of a spares package and up to seven more F/A-18A jets for parts by 2022. So far, five have been delivered and two have completed testing and evaluation after undergoing a conversion program that includes Canadian operational flight program software, cockpit configuration, a naval aircrew common ejection seat, night vision imaging systems, external lighting on the tail, changes to the landing gear and installation of the Lockheed Martin sniper targeting pod. “The allocation (of the Australian aircraft) will be based upon squadron needs and aircraft fatigue,' said Balfe. “One of the benefits besides helping close that quantitative capability gap, they give us a bigger pool of aircraft over which to distribute the stress and strain of [fighter operations]. They also allow us to have aircraft out of service while they are going through various phases of upgrades under HEP.” Enhanced combat systems may put the CF-188 on a par with current threats for the next decade, but they don't negate the need for a more modern fighter, Balfe observed. “We have a limited window where the upgraded CF-188 will have operational parity. Past that window, roughly 2032, it will most likely not have operational parity any longer.” https://www.skiesmag.com/news/major-upgrades-canada-fleet-cf-188-hornets

  • Boeing T-7A Red Hawk completes cross-country flight to Edwards AFB to continue testing - Skies Mag

    9 novembre 2023 | Local, Aérospatial

    Boeing T-7A Red Hawk completes cross-country flight to Edwards AFB to continue testing - Skies Mag

    The first Boeing T-7A Red Hawk for the Air Force has completed its 1,400-mile cross-country flight to Edwards AFB to move forward with flight testing.

  • ‘Near total power failure’: Questions about propulsion system on new Canadian warship

    17 décembre 2018 | Local, Naval

    ‘Near total power failure’: Questions about propulsion system on new Canadian warship

    David Pugliese, Ottawa Citizen The Defence department has acknowledged the government's choice for a $60-billion warship program has a propulsion system that has been plagued by problems, at times shutting down entirely while at sea. But the department says it is confident the Type 26 ship, designed by the British firm BAE, meets all the requirements necessary for the Royal Canadian Navy's future fleet. The acknowledgement of the problems is contained in a Department of National Defence fact sheet that outlines potential issues with the selection of Lockheed Martin Canada, with its bid of the BAE Type 26 vessel, as the “preferred bidder” for the Canadian Surface Combatant program. That $60-billion CSC program, the largest single government purchase in Canadian history, will see the construction of 15 warships at Irving Shipbuilding in Halifax. Among the issues addressed by the DND was an outline of some potential problems with the Type 26 warship. “The British Navy has had serious issues with the propulsion system in their BAE Type 45s, both in the generator — which has caused near-total power failures — and the engines themselves,” the DND document noted. “Given it uses the same propulsion system, will this affect the CSC too?” But in the document, the DND also expressed confidence in the Type 26, adding that a design that didn't meet all the requirements would not have been considered. Until negotiations with the preferred bidder are completed, the DND can't discuss specific elements of the warship design, the department's response pointed out. Over the years, the BAE Type 45 destroyers have been plagued by problems, with the propulsion system conking out during operations and exercises. In March the British government awarded a contract to BAE worth more than $200 million to fix the problems, with the first ship to be overhauled by 2021. But a representative of the Lockheed Martin Canada-BAE team noted in an email to Postmedia that the propulsion system for the Type 26 “is fundamentally different to the Type 45 propulsion system.” “The T26 design therefore offers more propulsion options, both mechanical and electrical, and is underpinned by a greater number of propulsion engines, providing greater redundancy,” the email noted. “We are confident that the Type 26 design is the right solution for the Royal Canadian Navy and meets the requirements for the Canadian Surface Combatant.” Officials with the consortium expressed surprise at the suggestion the Type 45 issues could be linked to the Type 26 design. Negotiations with Lockheed Martin Canada on the surface combatant program have already hit a roadblock after the Canadian International Trade Tribunal ordered the Canadian government on Nov. 27 to postpone the awarding of a contract while it investigates claims the Type 26 doesn't meet the military's needs. That came after Alion, one of the firms that submitted a bid on the CSC project, filed a complaint with the trade tribunal. Alion, a U.S. firm, has also filed a legal challenge in federal court, asking for a judicial review of the decision by Irving and the Canadian government to select Lockheed Martin and the BAE design. Alion argues the Type 26 cannot meet the stated mandatory requirements, including speed, that Canada set out for the new warship and because of that should be disqualified. Alion had offered Canada the Dutch De Zeven Provinciën Air Defence and Command frigate, which the firm says meets all of Canada's requirements. The entry of the BAE Type 26 warship in the competition was controversial. Previously the Liberal government had said only mature existing designs or designs of ships already in service with other navies would be accepted, on the grounds they could be built faster and would be less risky. Unproven designs can face challenges as problems are found once the vessel is in the water and operating. But that criteria was changed and the government and Irving accepted the BAE design, though at the time it existed only on the drawing board. Construction began on the first Type 26 frigate in the summer of 2017 for Britain's Royal Navy, but it has not yet been completed. Company claims about what the Type 26 ship can do, including how fast it can go, are based on simulations or projections. The two other bidders in the Canadian program have ships actually in service with other navies so their capabilities are known. dpugliese@postmedia.com Twitter.com/davidpugliese https://nationalpost.com/news/canada/questions-raised-about-propulsion-system-on-new-canadian-warship-amid-fears-engines-could-conk-out

Toutes les nouvelles