Back to news

March 6, 2020 | International, Aerospace

Northrop offers Triton drones to Australia, as US budget request pauses orders

By: Nigel Pittaway

MELBOURNE, Australia — Faced with a possible two-year production pause in the wake of the Trump administratoin's fiscal 2021 budget request, Northrop Grumman is offering to accelerate MQ-4C Triton drone production for Australia at what it says is the lowest price it has ever offered for an unmanned platform.

Under the budget request, funding for U.S. Navy MQ-4C acquisition will be suspended until at least FY23, and aircraft that was to be built in low-rate initial production Lots 6 and 7 will now be deferred.

However, the proposal leaves the door open for Triton production to recommence in 2023 while securing funds to complete development of the IFC 4 variant of the drone. This latter model is required by the U.S. Navy to replace its aging fleet of Lockheed Martin-made EP-3E Aries II aircraft used for signals reconnaissance.

Speaking in Canberra on March 4, Northrop's chief executive in Australia, Chris Deeble, said the company's proposal is to move forward production of five aircraft for the Royal Australian Air Force into the current, and funded, low-rate initial production 5 batch during the two years the U.S. Navy might not buy the aircraft.

“PB21 has created an incredible opportunity for Australia. We've been working with the U.S. Navy to provide an option to buy the rest of their aircraft as part of the LRIP 5 contract,” Deeble said. “That provides a significant unit-cost saving to Australia, so now's the time to buy more than ever.”

Australia has a requirement for six Tritons, built to the IFC 4 standard, under Project Air 7000 Phase 1B. However, it currently has only one aircraft on order, which would be built as part of LRIP 5 and requires a more finalized contract by May 15 if the plan is to go ahead.

Deeble said Australia will need to make a decision on the additional five aircraft by the end of June.

Northrop Grumman's proposal is to add the five Australian aircraft to the existing three aircraft in LRIP 5 (two U.S. Navy and one RAAF aircraft), bringing the total to eight.

Deeble said the offer preserves Australia's planned funding profile for Triton acquisition and that the delivery schedule will remain the same. Should Australia finalize an agreement to meet its six-Triton requirement, it expects to receive them between 2023 and 2025, with declaration of final operational capability in the 2025-2026 time frame.

"The two key points are, this will probably the best price you will be able to achieve for the Triton capability, and we're remaining within the [Australian] defense profile,” Deeble added. “We also look to provide Australian industry opportunities as a consequence. And committing to an additional five aircraft in LRIP 5 will provide about AU$56 million [(U.S. $37 million)] of opportunity in that regard.”

https://www.defensenews.com/unmanned/2020/03/04/northrop-offers-triton-drones-to-australia-as-us-budget-request-pauses-orders/

On the same subject

  • US Defense Department launches Gremlins drone from a mothership for the first time

    January 29, 2020 | International, Aerospace

    US Defense Department launches Gremlins drone from a mothership for the first time

    WASHINGTON — The U.S. Defense Department is one step closer to having swarming drones that it can launch from military planes and recover in midair, having successfully conducted the first flight of the Gremlins aircraft in November. The test, which occurred at Dugway Proving Ground, Utah, proved that a C-130A could successfully launch an X-61A Gremlins Air Vehicle, said Tim Keeter, who manages the program for Dynetics. The company won the Gremlins contract from the Defense Advanced Research Projects Agency in 2018. “It gives us a lot of confidence going forward that this vehicle can fly where it's supposed to fly, how it's supposed to fly,” Keeter said during a Jan. 21 phone call with reporters. “Now the team can be principally focused on the other portion of our program plan ... which is to successfully rendezvous with a C-130, dock with our docking system ... and safely recover the vehicle.” During the test, which lasted 1 hour and 41 minutes, the X-61A flew with no anomalies and the DARPA-Dynetics team completed all test objectives, including transitioning the X-61A from a cold-engine start to stable flight; validating the Gremlins' data links and handing off control of the drone between air and ground control stations; deploying the docking arm; and collecting data on the air vehicle. However, during the recovery process, the drone crashed to the ground and was destroyed. The drogue parachute, which deployed first to slow the air vehicle, functioned as planned, Keeter explained. However, the larger main parachute — which would soften the landing of the air vehicle so that the drone could be reused — did not correctly deploy due to a mechanical issue. Dynetics has built four other Gremlins vehicles, leaving enough drones to accomplish the program's primary requirement to fly and recover four Gremlins in 30 minutes, said Scott Wierzbanowski, DARPA's Gremlins program manager. The next demonstration, set for sometime this spring, will verify whether the Gremlins can be successfully recovered by the C-130 while in flight. Wierzbanowski characterized this test as critical for proving that the Gremlins can be reused over multiple missions — a key point for bearing out the cost-effectiveness of the concept. "If I have an expendable vehicle, at some point I'm not going to want to be able to use those things because they're just too expensive,” he said. “But if I can recover them and then amortize the cost of that vehicle over 10 or 20 or 30 sorties, maybe there's a bend in the curve somewhere that really will allow us to benefit from these smaller, more affordable, attritable systems." During the recovery process, the C-130 will lower a towed capture device that will mate with the Gremlins drone, thus avoiding the turbulence generated by the wake of the larger aircraft, Keeter said. Once the drone is stabilized by the capture device, an engagement arm deploys, docking with the X-61A and bringing it inside the C-130 cargo bay to be stowed. https://www.defensenews.com/industry/techwatch/2020/01/28/us-defense-department-launches-gremlins-drone-from-a-mothership-for-the-first-time/

  • Drone corps proposal would disrupt US Army plans, says undersecretary

    May 19, 2024 | International, C4ISR

    Drone corps proposal would disrupt US Army plans, says undersecretary

    The branch would be responsible for integrating drones across the Army, providing specialized training as well as leading research and development efforts.

  • Stackley: Combined L3Harris Technology Will Compete to Build New Navy Distributed Battle Networks

    August 5, 2020 | International, Naval

    Stackley: Combined L3Harris Technology Will Compete to Build New Navy Distributed Battle Networks

    By: Megan Eckstein August 4, 2020 3:25 PM A year after L3 and Harris merged into a single $18-billion defense company, the corporation is finding its formerly siloed components can come together to meet some of the Navy's and joint force's most complex needs. Sean Stackley, president of the Integrated Mission Systems segment for L3Harris Technologies, told USNI News in an interview that L3 and Harris each had important pieces of the puzzle to help the Navy achieve its distributed maritime operations concept. But Stackley, who previously served as the assistant secretary of the Navy for research, development and acquisition from 2008 to 2017 and as the acting secretary of the Navy from January to August 2017, said the key to DMO is not just fielding new platforms and tools but rather managing how information flows throughout the network, he said. Under the Navy's DMO vision, rather than deploying concentrated strike groups to a few places around the globe, the Navy would have many dispersed ships and planes that could share data to create a combined picture of the battlespace. He described the future fight as a combination of aircraft, ships, submarines and ground vehicles – manned and unmanned – all with sensors and communications devices, feeding data into a battle management system. The challenge will be the ordnance-to-target ratio and picking out the right targets to control the fight. Before the fight starts, the U.S. needs to ensure it has control of the EM spectrum so that network of platforms can communicate, sense and target. “It's really about linking sensors, providing assured communications, having the ability to disrupt the enemy's communications in their operating picture. It's everything from electronic support to electronic attack. ... That is a tremendous challenge because you have to work across the services, work across the platforms, you have to work across industry, you have to work across systems. So there's not one contract that's going to go out for DMO; it's going to be incremental. It's going to be an incremental approach to building this capability over time, over systems. And frankly the Air Force and the Navy are taking different approaches. I think there are some best practices across the services that they'll benefit by as each of these get more mature,” he explained, saying those were his personal views and not the company's. “I'm frankly studying the way the Air Force is approaching ABMS [Advanced Battle Management System], and I see a lot of strengths to their approach. There's a lot of parallel activities to the way they're contracting ABMS that should allow, if we do it right, should allow the incremental steps that need to be taken to be done in parallel as opposed to one at a time in a series. And I'm frankly also spending time with the Navy trying to link up the Navy's approach to DMO with the Air Force's approach to ABMS, to at least study – the services should be studying each other's approaches – and best practices should emerge, because otherwise we won't get there, it will take too long.” For example, he said, the Navy is preparing to contract for a ship-based signals intelligence program called Spectral. It also has an upcoming competition for a Spear program for electro-optical/infrared targeting. Under DMO, Stackley said, those two could be approached in parallel to ensure the whole network has access to the data they produce, instead of pursuing them separately and waiting for someone down the line to integrate the systems into a larger network. “Traditional (acquisition) says you do the standalone upgrades; inside of DMO, you're constantly looking at the total framework architecture, how do these capabilities integrate” on the front end “so that on the back end you are, in fact, building a distributed maritime operational capability,” he said. Stackley said the company is positioned to adapt to the changing requirements of DMO. “We are on the ocean floor, and we operate from the depths of the sea to the depths of space. We are in every domain. We operate across the entire kill chain, from sensing, communications, tracking, targeting, right down to putting ordnance on target. We operate across the kill chain and across the entire electromagnetic (EM) spectrum. In the acoustic realm, we operate below 10 hertz, and then you move into the [radio frequency] and in the RF end of the EM spectrum we're operating above 50 gigahertz. So we dominate – I would say spectrum superiority is one of our strengths. And we do this to provide capabilities, solutions, for national security, ours and our allies.” The company's advantage is based on “two companies a couple of years ago that had a large number of stand-alone capabilities seeing a match in terms of our separate capabilities, and also seeing the power that comes through integration of these capabilities, understanding where the customer is going in terms of the future fight where that EM spectrum, that spectrum superiority, is so critical. Whether you're talking about the Navy's strategy, the Navy's vision for distributed maritime operations, or the Air Force's advanced battle management system, it is the same capability the services are looking for, which is to have the advanced sensors at the forward edge, have the information that they collect communicated back through secure data links to platforms, have that information integrated into a common picture so that we can control the spectrum, we can ensure our communications, we can disrupt [adversaries'] communications, and we can pull the information from our sensors and get it to where it's most needed so that when the time comes we can put ordnance on target rapidly and reliably,” Stackley said. The two companies had different tools in their portfolios prior to the merger that contribute to this new ability to network together tools for fighting in the EM spectrum. For example, “Harris focuses on tactical communications, electronic warfare, space payloads and supports FAA air traffic control modernization. L3's portfolio is a bit more diverse and includes electronic components, aircraft modernization, flight simulation, UAS/UUVs, airport security and C4ISR components and subsystems,” Defense News quoted Byron Callan, an analyst for Capital Alpha Partners, as writing in a note to investors ahead of the merger. In the interview, Stackley used undersea warfare as an example of where L3 and Harris have been to provide the Navy options to support DMO. On the seabed, the company leveraged each of the halves' legacy systems to create an underwater acoustic system that won a prime contract with the Navy – something neither L3 nor Harris could have done before the merger. “Within the first year, we're offering integrated solutions to the customer that prior to the merger we would never have seen and would never have found together,” Stackley said. The combined portfolio also includes experience with unmanned underwater vessels. L3Harris is competing for the Medium UUV program that will replace separate medium UUV systems for the explosive ordnance disposal and the submarine communities. Stackley said the company had an already-existing, highly modular design that allowed it to work with Navy labs to integrate and operate advanced payloads at sea while the Navy was developing its specifications for the MUUV program. The company's UUV experience, Stackley said, coupled with underwater acoustic systems and above-water communications capabilities that reside within L3Harris, means it can offer a package that allows the Navy to receive real-time or near-real-time updates from this UUV. The company also recently won a contract with the Navy to design and build at least one Medium Unmanned Surface Vehicle (MUSV), with options for more vehicles. Stackley said L3Harris had extensive experience with USVs, including through the Overlord large USV demonstrator program run by the Pentagon's Strategic Capabilities Office. For its MUSV offering, the company is partnering with Gibbs and Cox, which also participated in the Overlord program. Through its in-water testing, L3Harris has learned about autonomy software, vehicle reliability, and command and control. Stackley said the company, outside of the MUSV program, wants to take its USV a step further and demonstrate to the Navy another option for combining several legacy L3 and Harris technologies. The company builds the signals intelligence system on the Air Force's RC-135 surveillance aircraft. That system had been stovepiped in the company's aircraft systems division before, but Stackley said L3Harris plans to use that as the basis for the upcoming Spectral competition, which will be a ship-based SIGINT tool. L3Harris will adapt that system for integration on a medium USV, he said, thereby demonstrating “a sensing capability, where you start with a reliable unmanned surface vessel that has endurance on station, more so than an aircraft; you give it a sensor package that [meets Navy and Joint Force needs]; and then you add to that the data links that L3Harris provides and the secure communications that we provide, so that now you've got a node on the network that's passing critical information to the operating force from an unmanned vessel.” He made clear that the SIGINT package on the USV is not part of the Navy's current MUSV program but that L3Harris would pitch the capability to the service. https://news.usni.org/2020/08/04/stackley-combined-l3harris-technology-will-compete-to-build-new-navy-distributed-battle-networks

All news