26 juillet 2019 | International, Naval

U.S. Navy using BAE Systems payload tubes to increase Virginia class strike capability

uly 25, 2019 - BAE Systems has received a follow-on contract to produce 28 more payload tubes for the U.S. Navy's Block V Virginia-class attack submarines.

Under the contract with General Dynamics Electric Boat, a builder of the Virginia class, BAE Systems will deliver seven sets of four tubes each for the Virginia Payload Modules (VPM).

The Navy is adding significant capability to the latest Virginia-class boats by increasing the firepower and payload capacity of the Block V submarines. The VPM extends the length of Block V subs over previous versions of the Virginia class by adding a mid-body section to create more payload space. Each large-diameter payload tube can store and launch up to seven Tomahawk and future guided cruise missiles.

“The VPM is critical to the Virginia class because it offers not only additional strike capacity, but the flexibility to integrate future payload types, such as unmanned systems and next-generation weapons, as threats evolve,” said Joe Senftle, vice president and general manager of Weapon Systems at BAE Systems. “We've invested heavily in the people, processes, and tools required to successfully deliver these payload tubes to Electric Boat and to help ensure the Navy's undersea fleet remains a dominant global force.”

BAE Systems is also providing nine payload tubes under previously awarded VPM contracts. As the leading provider of propulsors and other submarine systems, the company has a long history of supporting the Navy's submarine fleet. In addition to payload tubes, BAE Systems is also providing propulsors, spare hardware, and tailcones for Block IV Virginia-class vessels and is prepared to do the same for Block V.

Work under this contract will be performed at the company's facility in Louisville, Kentucky, with deliveries scheduled to begin in 2021.

https://www.epicos.com/article/449335/us-navy-using-bae-systems-payload-tubes-increase-virginia-class-strike-capability

Sur le même sujet

  • US Army-funded research project makes inroads on scaling quantum processors

    19 août 2020 | International, C4ISR

    US Army-funded research project makes inroads on scaling quantum processors

    Andrew Eversden Correction: An earlier version of this story misspelled the name of Sara Gamble, a program manager in quantum information science at the Army Research Office. WASHINGTON — A research project funded by the U.S. Army has developed a new approach to manufacturing quantum computer chips, representing a significant step forward toward making quantum processors at the scale needed to deliver rapid processing capabilities to the battlefield. The new approach could impact how the service builds quantum networks and distributed sensing capabilities. Quantum processors use a qubit to store information. The researchers were looking to increase the amount of qubits placed onto a photonic chip. Prior to the experiment, researchers were only able to get two or three qubits into one photonic chip, said Sara Gamble, a program manager in quantum information science at the Army Research Office, an element of the Army Research Laboratory at Combat Capabilities Development Command. “Currently we can exert control and successfully manipulate handfuls of qubits, like very countable numbers of them. But when it comes to the millions or billions of qubits that we need for applications of actual interest, how to get to those millions or billions of qubits is a major research challenge,” Gamble said in an interview with C4ISRNET. In this study, researchers succeeded in integrating 128 qubits onto a photonic chip by making small quantum “chiplets” and placing them onto a larger circuit. The chiplets were able to carry quantum information through artificial atoms created by scientists by exploiting defects in diamonds. The increase to 128 is a large jump, but well short of the thousands, millions or billions of qubits needed to successfully complete the applications the service sees as useful in the future. For example, qubits could be used for distributed sensing through networks of quantum systems on the battlefield to allow for greater situational awareness, though Gamble noted that quantum information science research is still in the early stage. “We know that a lot of these qubit types are also excellent sensors. So for things like electric and magnetic fields, these quantum sensors can sense those fields ... with a higher sensitivity than you can get out of classical sensor,” Gamble said. “And then if you network those quantum sensor systems together, that increase you can get in your signal goes up even more. “So we need those isolated qubit sensors. But then we also need a way for those qubit sensors to talk to each other over a quantum network.” Being able to process data at quantum speeds would benefit the military as it seeks to make decisions based on large sets of data coming in from the battlefield in near-real time, and as it moves toward multidomain operations. “It's a fundamentally different way to gather, process and share information,” Gamble said. The research was completed by scientists at the Massachusetts Institute of Technology and Sandia National Laboratories. The new technology still needs to undergo tests to ensure the qubits in the chip can be controlled in a way that would help the Army. Gamble said the research team is also considering how to automate parts of the production process. “Thinking about how we can automate these processes to make them even more repeatable is going to be exciting,” Gamble said, “and something that's going to be necessary if you really want to do this for, you know, millions to billions of qubits instead of 128.” https://www.c4isrnet.com/battlefield-tech/it-networks/2020/08/17/us-army-funded-research-project-makes-inroads-on-scaling-quantum-processors/

  • DARPA: With Insights from Integration Exercise, SubT Challenge Competitors Prepare for Tunnel Circuit

    30 avril 2019 | International, Terrestre

    DARPA: With Insights from Integration Exercise, SubT Challenge Competitors Prepare for Tunnel Circuit

    Nine teams hailing from four continents gathered in Idaho Springs, Colorado, the week of April 5-11, 2019, to test autonomous air and ground systems for navigating the dark, dangerous, dirty, and unpredictable underground domain. The SubT Integration Exercise, known as STIX, took place at the Colorado School of Mines' Edgar Experimental Mine. The event provided a shakeout opportunity for competitors in advance of the Tunnel Circuit in August, the first of three subdomains that teams will tackle in DARPA's Subterranean Challenge. The teams were divided into three groups. Each group had one day to experiment with their various systems during multiple runs in the mine, followed by a second day in which each team attempted a one-hour mock, scored run. Teams could earn points by accurately locating, identifying, and reporting artifacts placed within the tunnels. Artifacts included thermal manikins, backpacks, fire extinguishers, cell phones, and cordless drills – all inspired by objects an end user such as a warfighter or first responder might encounter. The mine environment presented teams with low light, high dust, metal rails, and irregular terrain. The DARPA team added to the complexity with a theatrical smoke machine, which mimicked real smoke a warfighter or first responder could contend with in an emergency response scenario, for example. “It was amazing to see the progression from day one into day two for each team as they explored the tunnels of the mine and began to understand just how complex and unknown these underground environments can be,” said Timothy Chung, program manager for the Subterranean Challenge in DARPA's Tactical Technology Office. “It's not just about testing whether there's enough light or if robots can drive a few meters. It's about how all that has to come together in a difficult environment and the teams are experiencing the challenge of integration in addition to technology development.” The competitors at STIX included a mix of DARPA-funded and self-funded teams: CERBERUS University of Nevada, Reno ETH Zurich, Switzerland Sierra Nevada Corporation University of California, Berkeley Flyability, Switzerland CoStar: Collaborative SubTerranean Autonomous Resilient Robots Jet Propulsion Laboratory California Institute of Technology Massachusetts Institute of Technology KAIST, South Korea CRETISE: Collaborative Robot Exploration and Teaming In Subterranean Environments Endeavor Robotics Neya Systems CSIRO Data 61 Commonwealth Scientific and Industrial Research Organisation, Australia Emesent, Australia Georgia Institute of Technology CTU-CRAS Czech Technical University in Prague, Czech Republic Université Laval, Canada Explorer Carnegie Mellon University Oregon State University MARBLE: Multi-agent Autonomy with Radar-Based Localization for Exploration University of Colorado, Boulder University of Colorado, Denver Scientific Systems Company, Inc. PLUTO: Pennsylvania Laboratory for Underground Tunnel Operations University of Pennsylvania Exyn Technologies Ghost Robotics Robotika Robotika.cz, Czech Republic Czech University of Life Science, Czech Republic Following the Tunnel Circuit, teams will compete in the Urban Circuit, which will focus on underground urban environments such as mass transit and municipal infrastructure; and the Cave Circuit, which will focus on naturally occurring cave networks. Locations for the circuit events have not been announced. Qualification is ongoing for the circuit events. Requirements can be found in the SubT Qualification Guide available on the Resources Page. Teams interested in joining either the virtual or systems tracks can still register and are encouraged to join the SubT Community Forum to exchange ideas, explore teaming opportunities, and receive updates on the Challenge. For additional information on the DARPA Subterranean Challenge, please visit www.subtchallenge.com. Please email questions to SubTChallenge@darpa.mil. https://www.darpa.mil/news-events/2019-04-29

  • Elbit Systems Awarded a $72 Million Contract to Supply Hermes 900 Unmanned Aircraft Systems to an International Customer

    14 novembre 2022 | International, Aérospatial

    Elbit Systems Awarded a $72 Million Contract to Supply Hermes 900 Unmanned Aircraft Systems to an International Customer

    The Hermes 900 UAS has been selected to-date by more than 15 customers attesting to its competitive edge combining technological sophistication, reliability, open architecture and a solid growth path

Toutes les nouvelles