9 septembre 2020 | International, Aérospatial

Turkey develops AI-based simulator for light fighter jet

ANKARA, Turkey — Turkish Aerospace Industries says it has developed Turkey's first artificial intelligence-based simulator, which will be used in the design and development phases of Hurjet, a locally designed light assault aircraft.

TAI said the engineering simulator, Hurjet 270, is designed to collect feedback from test pilots to make the design of Hurjet “better, more solid and more efficient.” The simulator is also meant to detect design faults at the development stage. Company officials said the simulator will feature “human eye-level resolution.”

Atilla Dogan, TAI's deputy general manager for aircraft design, told the state news agency Anadolu that Hurjet 270 will help engineers improve designing flight control algorithms and avionics software based on feedback from test pilots.

The armed trainer Hurjet is a jet engine version of the turboprop Hurkus, Turkey's first indigenous basic trainer aircraft. TAI launched the Hurjet program in 2018, with a target of having the aircraft's maiden flight in 2022.

The Hurjet will have a maximum speed of Mach 1.2 and can fly at a maximum altitude of 45,000 feet. The aircraft will have a maximum payload of 3,000 kilograms, including ammunition, radar and camera.

Hurkus-C, the armed version of the base variant of Hurkus, features locally developed ammunition including CIRIT, TEBER, HGK and LGK. It can also use INS/GPS-guided bombs, conventional bombs, non-guided rockets and machine guns.

Hurkus-C also features armored body parts, a self-protection system, a data link, laser tacking, an electro-optical and infrared pod, an external fuel tank, and advanced avionics.

With a 1,500-kilogram payload that can be used through seven external hardpoints, the Hurkus-C can perform light-attack and armed reconnaissance missions.

https://www.c4isrnet.com/artificial-intelligence/2020/09/08/turkey-develops-ai-based-simulator-for-light-fighter-jet/

Sur le même sujet

  • Exclusive: Lockheed raises concerns over L3Harris-Aerojet deal

    20 juin 2023 | International, Aérospatial

    Exclusive: Lockheed raises concerns over L3Harris-Aerojet deal

    Lockheed Martin has raised concerns with the U.S. Defense Department and Federal Trade Commission (FTC) about L3Harris's acquisition of Aerojet Rocketdyne , Lockheed's chief operating officer said on Tuesday.

  • The Army's M1 Abrams Tank Is About To Get Even Deadlier

    8 janvier 2019 | International, Terrestre, C4ISR

    The Army's M1 Abrams Tank Is About To Get Even Deadlier

    by Kris Osborn The Army is engineering new AI-enabled Hostile Fire Detection sensors for its fleet of armored combat vehicles to identify, track and target incoming enemy small arms fire. This system, integrated onto Apache Attack helicopters, uses infrared sensors to ID a “muzzle flash” or heat signature from an enemy weapon. The location of enemy fire could then be determined by a gateway processor on board the helicopter able to quickly geolocate the attack. The Army is engineering new AI-enabled Hostile Fire Detection sensors for its fleet of armored combat vehicles to identify, track and target incoming enemy small arms fire. Even if the enemy rounds being fired are from small arms fire and not necessarily an urgent or immediate threat to heavily armored combat vehicles such as an Abrams, Stryker or Bradley, there is naturally great value in quickly finding the location of incoming enemy small arms attacks, Army weapons developers explain. There are a range of sensors now being explored by Army developers; infrared sensors, for example, are designed to identify the “heat” signature emerging from enemy fire and, over the years, the Army has also used focal plane array detection technology as well as acoustic sensors. “We are collecting threat signature data and assessing sensors and algorithm performance,” Gene Klager, Deputy Director, Ground Combat Systems Division, Night Vision and Electronic Sensors Directorate, told Warrior Maven in an interview last year. Klager's unit, which works closely with Army acquisition to identify and at times fast-track technology to war, is part of the Army's Communications, Electronics, Research, Development and Engineering Center (CERDEC). Army senior leaders also told Warrior Maven the service will be further integrating HFD sensors this year, in preparation for more formals testing to follow in 2019. Enabling counterattack is a fundamental element of this, because being able to ID enemy fire would enable vehicle crews to attack targets from beneath the protection of an armored hatch. The Army currently deploys a targeting and attack system called Common Remotely Operated Weapons System, or CROWS; using a display screen, targeting sensors and controls operating externally mounted weapons, CROWS enables soldiers to attack from beneath the protection of armor. “If we get a hostile fire detection, the CROWS could be slued to that location to engage what we call slue to cue,” Klager said. Much of the emerging technology tied to these sensors can be understood in the context of artificial intelligence, or AI. Computer automation, using advanced algorithms and various forms of analytics, can quickly process incoming sensor data to ID a hostile fire signature. “AI also takes other information into account and helps reduce false alarms,” Klager explained. AI developers often explain that computer are able to much more efficiently organize information and perform key procedural functions such as performing checklists or identifying points of relevance; however, many of those same experts also add that human cognition, as something uniquely suited to solving dynamic problems and weighing multiple variables in real time, is nonetheless something still indispensable to most combat operations. Over the years, there have been a handful of small arms detection technologies tested and incorporated into helicopters; one of them, which first emerged as something the Army was evaluating in 2010 is called Ground Fire Acquisition System, or GFAS. This system, integrated onto Apache Attack helicopters, uses infrared sensors to ID a “muzzle flash” or heat signature from an enemy weapon. The location of enemy fire could then be determined by a gateway processor on board the helicopter able to quickly geolocate the attack. While Klager said there are, without question, similarities between air-combat HFD technologies and those emerging for ground combat vehicles, he did point to some distinct differences. “From ground to ground, you have a lot more moving objects,” he said. Potential integration between HFD and Active Protection Systems is also part of the calculus, Klager explained. APS technology, now being assessed on Army Abrams tanks, Bradleys and Strykers, uses sensors, fire control technology and interceptors to ID and knock out incoming RPGs and ATGMs, among other things. While APS, in concept and application, involves threats larger or more substantial than things like small arms fire, there is great combat utility in synching APS to HFD. Full article: https://nationalinterest.org/blog/buzz/armys-m1-abrams-tank-about-get-even-deadlier-40847

  • NFAC Tests Next-Generation Military Helicopter

    11 octobre 2019 | International, Aérospatial

    NFAC Tests Next-Generation Military Helicopter

    Wind Tunnel Test Designed To Validate The Aerodynamic Performance And Flight Mechanics Of Sikorsky's X2 Technology Aircraft The U.S. Army is looking to improve its aviation technology and recently called upon the AEDC National Full-Scale Aerodynamics Complex at Moffett Field in Mountain View, CA, to advance this effort. Engineers from Sikorsky Aircraft Corporation and The Boeing Company, in partnership with the U.S. Army Combat Capabilities Development Command Aviation & Missile Center Army Aviation Development Directorate, recently conducted a series of tests at NFAC to support the development of the SB>1 DEFIANT, a military helicopter being developed for the Army's Joint Multi-Role Technology Demonstrator (JMR TD) program. The goal of this wind tunnel test was to validate the aerodynamic performance and flight mechanics of Sikorsky's X2 Technology aircraft. These configurations, which are being utilized on the SB>1 DEFIANT, include a lift-offset coaxial rotor system, composite fuselage and rear-mounted pusher propulsor that provides increased speed. The SB>1 DEFIANT, which made its first flight in March, is a technology demonstrator for a medium-lift utility helicopter. Future uses of this type of air vehicle could include attack and assault, troop transport or MEDEVAC. The testing was conducted throughout the first half of 2019 and concluded in mid-June. To accomplish the tests, a 1/5 scale model of the SB>1 DEFIANT airframe with powered coaxial main rotors was placed in the NFAC 40- by 80-foot wind tunnel. Measurements included forces and moments on the various components, as well as fuselage, empennage and blade surface pressures. David Wang, NFAC test engineer, said the recent tests expanded on data collected from a JMR wind tunnel entry conducted at NFAC in 2016 by gathering data at faster speed ranges. “From the NFAC perspective, the wind tunnel test was successful,” Wang said. “The test customer was able to collect performance and handling qualities data for their subscale model up to their maximum design flight speed.” Data collected during the recent tests is undergoing review and analysis. It is unknown at this time if there will be future testing of the SB>1 DEFIANT model at NFAC. The full-scale SB>1 DEFIANT flight demonstrator is currently undergoing ground and flight tests at Sikorsky's flight test facility. According to the Sikorsky-Boeing JMR Team, data from SB>1 DEFIANT will help the Army develop requirements for new utility helicopters expected to enter service in the early 2030s. A previous DOD study concluded that upgrades to the aging DOD rotary wing aviation fleet would not provide the capabilities required for future operations. Significant improvement in several attributes of fleet aircraft, such as speed, payload, range, survivability and vertical lift are required to meet future needs. It was determined this improvement could be achieved through application of new technologies and designs. To accomplish its goal, the Army has been executing a science & technology (S&T) effort to mitigate risk associated with maturity of critical technologies, feasibility of desired capabilities and cost of a technical solution. An aspect of this effort is the air vehicle development associated with the JMR TD program. JMR TD is the alignment of Army Aviation's S&T with the Future Vertical Lift initiative, which seeks to develop a new family of system to modernize and replace the government's current fleet of rotorcraft. According to the Army, the intent of the JMR TD is to mitigate risk for the Future Vertical Lift program through means that include the testing of advanced technologies and efficient vehicle configurations. NFAC, managed and operated by Arnold Engineering Development Complex (AEDC), is the largest wind tunnel complex in the world. It consists of both the 40- by 80-foot and 80- by 120- foot wind tunnels. These tunnels, which share a common drive system, are primarily used for aerodynamic and acoustic tests of rotorcraft and fixed wing, powered-lift V/STOL aircraft and developing advanced technologies for these vehicles. Both subscale and full-scale models are tested at NFAC. The speed range of the 40- by 80-foot wind tunnel test section is continuously variable from 0 to 300 knots, while the speed range in the 80- by 120-foot wind tunnel section is continuously variable from 0 to 100 knots. http://www.aero-news.net/index.cfm?do=main.textpost&id=021bcb83-4df9-4253-b7a3-ff3805b7b16a

Toutes les nouvelles