21 novembre 2018 | International, C4ISR

To maintain tech edge, US seeks export controls on AI

By:

In just two words, the phrase “artificial intelligence” captures a deep techno-utopian promise, the notion that through craftsmanship humans can create learning and thinking machines outside the processes of organic life. AI is typically the realm of technologists and science fiction writers.

Now it is also in the world of export controls prohibitions and restrictions on technologies as overseen by the Department of Commerce.

In a proposed rule announced Nov. 19, the Bureau of Industry and Security wants to set out guidelines establishing “criteria for identifying emerging technologies that are essential to U.S. national security.” The stated goals of such controls are tied to both security and protectionism for existing American industry, especially the science, technology, engineering and manufacturing sectors.

The proposed rules encompass 14 technologies, covering brain-computer interfaces to advanced surveillance technology. Nestled in that list of technologies is “artificial intelligence (AI) and machine learning technology,” which is further broken into 11 related tools.

Here is a list of all the kinds of AI that the new rules seek to put under Commerce export controls:

  • Neural networks and deep learning (e.g., brain modelling, time series prediction, classification)
  • Evolution and genetic computation (e.g., genetic algorithms, genetic programming)
  • Reinforcement learning
  • Computer vision (e.g., object recognition, image understanding)
  • Expert systems (e.g., decision support systems, teaching systems)
  • Speech and audio processing (e.g., speech recognition and production)
  • Natural language processing ( e.g., machine translation)
  • Planning (e.g., scheduling, game playing)
  • Audio and video manipulation technologies (e.g., voice cloning, deepfakes)
  • AI cloud technologies
  • AI chipsets

Several of these are as much mathematical concepts, or processes, as they are distinct, controllable technologies. Others, like AI cloud technologies, suggest always-online servers, which by the very nature of the internet, are difficult to control within borders.

Tackling an entire technological field, especially one with as low a barrier to entry as coding, is a tricky proposition, even in the instances where the technology is clearly defined.

Why might the White House go through all this trouble?

“These revisions could compose an important element of a strategy of targeted countermeasures against the near-term threat posed by China's tactics for tech transfer and the long-term challenge of China's emergence as a powerhouse in innovation,” said Elsa B. Kania, adjunct fellow at the Center for New American Security.

“However, the revision of this traditional mechanism for today's challenges is inherently challenging, particularly when development is driven by commercial technologies.”

Unlike, say, controlling the components and designs of missiles in the Cold War, many of the technologies covered under these proposed rules have both commercial and military applications. We need not look abroad to find this. Project Maven, the tool Google created to process images collected from drones, was built on top of an open-source library. Identifying objects in images is hardly a military-specific task. Should companies within the United States be restricted in how they create, sell and share those same tools with researchers and commercial companies outside American borders?

“China's national strategy of military-civil fusion, which seeks to create and leverage synergies among defense, academic, and commercial technological developments in dual-use technologies, increases the ambiguity and uncertainty of tech transfer and collaboration,” Kania said.

“That is, the boundaries between defense and commercial technologies can become quite blurred as a result of the nature of these technologies and the Chinese government's strategy for their integrated development.”

Putting in place controls to hinder the free flow of AI between American companies and businesses abroad may mitigate that risk somewhat, but countries set on acquiring the tools can pursue research by other means, including technology transfers, espionage, theft through hacking, or even straightforward investment and acquisition. Staying ahead in artificial intelligence likely cannot be done through commerce restrictions alone.

“The U.S. must recognize that such controls may slow and hinder China's advances in these emerging technologies, but China's emergence as a powerhouse and would-be superpower in such emerging technologies will remain a critical long-term challenge,” Kania said. “We must not only pursue such defensive countermeasures, but also undertake a more offensive approach to ensuring future American competitiveness through investing in our own innovation ecosystem.”

https://www.c4isrnet.com/it-networks/2018/11/20/to-maintain-tech-edge-us-seeks-export-controls-on-ai

Sur le même sujet

  • Carderock Uses High-Fidelity Signature Simulation to Train Surface Combat Systems

    5 août 2019 | International, C4ISR

    Carderock Uses High-Fidelity Signature Simulation to Train Surface Combat Systems

    By Benjamin McNight III, Naval Surface Warfare Center, Carderock Division Public Affairs WEST BETHESDA, Md. (NNS) -- In the world of simulations, getting a system to act as close to authentic as the real-world situations it represents is always the main goal. Naval Surface Warfare Center (NSWC), Carderock Division develops high-fidelity acoustic simulation and training systems, giving naval personnel the ability to practice combat scenarios virtually. The Combined Integrated Air and Missile Defense (IAMD) and Anti-Submarine Warfare (ASW) Trainer, better known as CIAT, made its official debut in December 2018 at Naval Base San Diego. In June, Naval Station Norfolk became the site for another CIAT installation. Motions to create this trainer began in 2014, according to Rich Loeffler, Carderock's senior scientific technical manager, director for signatures, tactical decision aids and training systems (Code 705). “CIAT is what we refer to as a Combat Systems Team Trainer,” Loeffler said. “Meaning that your goal is to bring in the whole portion of the crew that would be operating the combat system and train them in a shore site how they can best utilize the system when they are at sea.” Carderock shares CIAT responsibilities with NSWC Dahlgren Division. Dahlgren is responsible for the overall system integration and manages the IAMD aspect of the trainer, while Carderock leads the development of the acoustic and ASW capabilities. Carderock also has capabilities that contribute to the IAMD training. Using the periscope simulation that creates a real-time visual simulation of what one could see through the periscope of a submarine, Loeffler said they were able to utilize that technology for the surface ship trainer in the CIAT. “In this case, they have deck cameras if they want to be able to see when a missile launches from the forward or aft launchers. We basically provide the visuals for that,” he said. By modeling the threats and the ocean environment and then stimulating the actual tactical combat system software, the CIAT system is highly flexible in the ability to train real-world scenarios. With the many possibilities of training situations that can be created within the CIAT comes the need to use multiple sources of knowledge to create effective training situations that will benefit the fleet. “We'll work with people like the Office of Naval Intelligence to get threat intelligence data, we'll work with folks like the Naval Oceanographic Office to get the latest environmental models and databases, and then we'll work with the tactical programs themselves to get the tactical software,” Loeffler said. “Our role here at Carderock has been to leverage signature simulation capabilities we have developed over the years across submarine, surface and surveillance ASW trainers and provide the system design, development, integration and testing support to implement the CIAT requirement to support the fleet's training needs,” he said. Before the CIAT existed, the Surface ASW Synthetic Trainer (SAST) was developed by Carderock as an on-board embedded training system within the AN/SQQ-89 A(V)15 Sonar system. Loeffler said beginning in 2008, they went through a series of large analyses to compare and contrast what the simulation produced with what operators saw at sea. The data from that testing helped further develop the SAST and subsequently create the CIAT. Now, they are able to represent all components of the operations they run from the physics modeling perspective, such as what sounds are generated and how they propagate through the water, interactions with interfering objects and sea-state effects on these variables. “Since we're acoustically stimulating the actual tactical software of the sonar system, the users are operating the systems just as they would at sea,” he said. Loeffler believes that there is not anything off limits for what the CIAT can do, but adapting with new threats will require the right development within the trainer to represent the real-world situation. Although the system is relatively new, discussions on the next steps in the development of the trainer are already taking place with the help of Center for Surface Combat Systems (CSCS) defining and prioritizing fleet training requirements “CSCS is basically the primary stakeholder that owns the surface-ship training schoolhouses, and they've done their requirements review to see what additional capabilities they'd like to see in the next version of CIAT,” Loeffler said. “So, we're going through that process, assessing those requirements and looking for what would go into the next version to further improve training and also address training of the new combat system capabilities as they are being introduced into the fleet.” https://www.navy.mil/submit/display.asp?story_id=110471

  • Thales Naval DRAKON solution enhances interoperability and secure connectivity for naval forces

    6 novembre 2024 | International, Naval

    Thales Naval DRAKON solution enhances interoperability and secure connectivity for naval forces

    Naval DRAKON was specifically developed to provide high-data-rate, robust and secure communications between naval vessels, airborne sensors and command centres.

  • Contracts for June 28, 2021

    29 juin 2021 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

    Contracts for June 28, 2021

    Today

Toutes les nouvelles