9 mai 2024 | International, Sécurité

The Top Four Things Tech Manufacturers can do to Bolster the Cybersecurity of Target-Rich, Cyber-Poor Organizations | CISA

Sur le même sujet

  • Guam’s air defense should learn lessons from Japan’s Aegis Ashore

    31 juillet 2020 | International, Aérospatial

    Guam’s air defense should learn lessons from Japan’s Aegis Ashore

    By: Timothy A. Walton and Bryan Clark The head of U.S. Indo-Pacific Command said last week his top priority is establishing an Aegis Ashore system on Guam by 2026. New air defenses will help protect U.S. citizens and forces in Guam; but as Japan's government found, Aegis Ashore may not be the best option to protect military and civilian targets from growing and improving Chinese and North Korean missile threats. Guam is pivotal to U.S. and allied military posture in the Western Pacific. Home to Andersen Air Force Base and Apra Harbor, it is far enough from adversaries like China and North Korea to negate the threat from more numerous short-range missiles but close enough to support air and naval operations throughout the Philippine Sea and South and East China seas. Although the current Terminal High Altitude Area Defense battery on Guam can defend against some ballistic missiles, its single AN/TPY-2 radar is vulnerable and cannot provide 360-degree coverage. Moreover, THAAD's focus on high altitudes makes it a poor fit to defeat lower-flying aircraft or cruise missiles that would likely be used by China's military against Guam. The island needs a new air defense architecture. Aegis Ashore is highly capable, but has its own limitations. Designed primarily to counter small numbers of ballistic missiles, its fixed missile magazine and radar would be vulnerable to attack and would fall short against the bombardment possible from China. Instead of installing one or more Aegis Ashore systems on Guam, a more effective air and missile defense architecture would combine the latest version of the Aegis Combat System with a disaggregated system of existing sensors, effectors, and command-and-control nodes. A distributed architecture would also be scalable, allowing air and missile defenses to also protect U.S. citizens and forces operating in the Northern Marianas. Guam's geography enables longer-range sensing than would be possible from a ship or a single Aegis Ashore radar. Fixed, relocatable and mobile radio frequency sensors should be positioned around the island's perimeter, such as compact versions of SPY-6 or Lower Tier Air and Missile Defense Sensor radars and the passive Army Long-Range Persistent Surveillance system. During periods of heightened tension, passive and active radio frequency and electro-optical/infrared sensors could also be deployed on unmanned aircraft and stratospheric balloons to monitor over-the-horizon threats. This mixed architecture would provide better collective coverage and be more difficult to defeat compared to one or two fixed Aegis Ashore deckhouses. To shoot down enemy missiles and aircraft, the architecture should field mobile, containerized launchers for long-range interceptors like the SM-6 and SM-3 rather than Aegis Ashore's finite and targetable in-ground vertical launch magazines. They should be complemented by medium- to short-range engagement systems to protect high-value targets such as the Patriot, the National Advanced Surface-to-Air Missile System or the Army's planned Indirect Fire Protection Capability, as well as non-kinetic defenses such as high-powered microwave weapons and electronic warfare systems that could damage or confuse the guidance systems on incoming missiles. Today, destroyers patrol the waters around Guam to provide ballistic missile defense capacity beyond that available with THAAD. A new distributed architecture would place more capacity ashore to free surface combatants from missile defense duty. In a crisis or conflict, the architecture could add capacity with surface action groups and combat air patrols capable of intercepting threats at longer ranges. Instead of Aegis Ashore's large, single C2 node, a distributed architecture would virtualize the Aegis Combat System to allow multiple facilities or mobile vehicles to serve as miniature air operations centers. The mobility of sensors, effectors and C2 nodes in this architecture would enable the employment of camouflage, concealment and deception, including decoys, to complicate enemy targeting and increase the number of weapons needed to ensure a successful attack. INDOPACOM's plan for implementing new Guam air defenses should also apply lessons from Japan's aborted Aegis Ashore program, whose accelerated timeline contributed to the selection of the least expensive and technically risky option — two fixed Aegis Ashore systems — and the discounting of alternatives. Adm. Phil Davidson's 2026 goal of improving Guam's defenses faces a similar risk. Bound by an iron triangle, Guam's air and missile defenses can be good, fast or cheap — but not all three. If 2026 is held as a rigid constraint, the only solution able to meet the schedule and requirements may be the familiar, and ineffective, fixed Aegis Ashore architecture. Compared to one or two Aegis Ashore sites, a distributed architecture may require slightly more time to develop or funds to field. But a phased approach could introduce new systems as funding becomes available and allow expanding the system's capability to meet the evolving threat. For example, SPY-6 radars, C2 bunkers and composite THAAD-Patriot-NASAMS batteries could be fielded before 2026, quickly followed by the introduction of mobile assets. Guam and the Northern Marianas are essential to U.S. strategy and operations in the Western Pacific. Their defenses have long been ignored, and Adm. Davidson should be lauded for charting a path forward. A disaggregated architecture, however, will be more likely to realize INDOPACOM's vision of resilient and scalable air and missile defense. Timothy A. Walton is a fellow at the Hudson Institute's Center for Defense Concepts and Technology, where Bryan Clark is a senior fellow. https://www.defensenews.com/opinion/commentary/2020/07/30/guams-air-defense-should-learn-lessons-from-japans-aegis-ashore/

  • Georgia base tapped to host F-35 fighters as A-10 fleet retires

    28 juin 2023 | International, Aérospatial

    Georgia base tapped to host F-35 fighters as A-10 fleet retires

    The Air Force said Monday it plans to bring two F-35A squadrons to the Valdosta base starting in fiscal 2029.

  • Army on path to use space sensors to help guns on the ground see farther

    7 juillet 2020 | International, Aérospatial, Terrestre

    Army on path to use space sensors to help guns on the ground see farther

    Jen Judson WASHINGTON — The Army is on a path to use space sensors to help its artillery see and shoot well beyond current capability. The service has already wrapped up an effort to achieve this capability, which took place in Europe in February and March, Gen. Mike Murray, Army Futures Command commander, told reporters in a media call. Murray was discussing how Army modernization would proceed despite COVID-19 social isolation measures in April. The Army will continue to build upon these early successes tapping into space assets to help guns on the ground hit long-range targets, an Army spokesperson told Defense News in a written statement. Conducted through Futures Command's cross functional team in charge of Assured Position, Navigation and Timing (A-PNT), the service was able to link space sensors with shooters in live-fire demonstrations in Grafenwoehr, Germany, on three separate occasions with the latest on March 23, the spokesperson wrote. Over the course of the demonstrations, the team “successfully sensed and hit targets at ranges beyond line of sight using satellite capabilities that have not been accessible to ground forces until now,” the spokesperson said. The exercise showed the “Army's ability to engage and defeat time sensitive targets with timely and accurate fires anywhere on the battlefield.” Tapping sensors that can help guide missiles and munitions to targets deep into the battlefield is critical to the Army's future long-range precision fires capability and key to operating across multiple domains. But achieving such distances requires connecting sensors and shooters that have never worked together before Long-Range Precision Fires (LRPF) is the Army's top modernization priority as it plays a critical role in the future battlefield and will be a centerpiece in the service's future Multi-Domain Operations doctrine currently in development. The LRPT cross functional team will continue to push the capabilities to far greater ranges than previously capable or than those distances previously allowed prior to the United States' withdrawal from the Intermediate-Range Nuclear Forces Treaty in 2019. During the initial live-fire demonstrations, a unit conducted an operation using the weapons and ammunition associated with their mission — in this case the Army integrated the capability with the Multiple Launch Rocket System (MLRS) and the M777 howitzer. The demonstrations used high explosive rounds equipped with a precision guidance kit fuze fired from the M777 howitzer or MRLS launcher. The Advanced Miniaturized Data Acquisition and Dissemination Vehicle accessed various sensors and target data was transmitted through the Joint Automated Deep Operations Coordination System and the Advanced Field Artillery Database System for the technical and tactical fire direction processes, the spokesperson detailed. The demonstrations gave “insight” into current capabilities “and their ability to link in novel ways to provide a capability down to the division operational level of combat,” the Army spokesperson said. Originally, pre-pandemic, the Army had planned to work on the capability throughout the scaled-back Defender Europe 2020 exercise using space-based sensors to pursue deep targets that “have not been responsive to ground forces until now,” according to the spokesperson. The APNT team will build upon the demonstrations by finding ways to reduce the sensor-to-shooter timeline to meet capability needs in the future anticipated operating environments. Ultimately, the Army will integrate the capability into the future Extended Range Cannon and a “full suite of Army fires platforms.” The ERCA cannon has already reached ranges of roughly 40 miles in recent tests at Yuma Proving Ground, Arizona. The service also plans to begin integrating with aviation platforms, the spokesperson said. The demonstrations are feeding into a “targeting process multi-domain operational strategy,” according to the spokesperson. The Army also plans to work on an architecture that connects both kinetic and non-kinetic assets from across joint, interagency and multinational partners. https://www.c4isrnet.com/2020/07/06/army-on-path-to-use-space-sensors-to-help-guns-on-the-ground-see-farther/

Toutes les nouvelles