30 août 2022 | International, Aérospatial

Space Force crafts range operations contract as launch pace quickens

Cape Canaveral Space Force Station and Kennedy Space Center could host as many as 300 launches annually, up from 67 this year and 31 in 2021.

https://www.c4isrnet.com/battlefield-tech/space/2022/08/30/space-force-crafts-range-operations-contract-as-launch-pace-quickens/

Sur le même sujet

  • As Bill Blair ramps up his warnings about the state of the military, Trudeau sticks to his script

    10 mars 2024 | International, Terrestre

    As Bill Blair ramps up his warnings about the state of the military, Trudeau sticks to his script

    It would be a gross overstatement to say there's a wedge developing between Defence Minister Bill Blair and Prime Minister Justin Trudeau on defence spending. But recent polls suggest there may be a wedge opening up between federal politicians and average Canadians alarmed at the state of this country's military.

  • Future Missile War Needs New Kind Of Command: CSIS

    7 juillet 2020 | International, Aérospatial

    Future Missile War Needs New Kind Of Command: CSIS

    Integrating missile defense – shooting down incoming missiles – with missile offense – destroying the launchers before they fire again – requires major changes in how the military fights. By SYDNEY J. FREEDBERG JR.on July 07, 2020 at 4:00 AM WASHINGTON: Don't try to shoot down each arrow as it comes; shoot the archer. That's a time-honored military principle that US forces would struggle to implement in an actual war with China, Russia, North Korea, or Iran, warns a new report from thinktank CSIS. New technology, like the Army's IBCS command network – now entering a major field test — can be part of the solution, but it's only part, writes Brian Green, a veteran of 30 years in the Pentagon, Capitol Hill, and the aerospace industry. Equally important and problematic are the command-and-control arrangements that determine who makes the decision to fire what, at what, and when. Today, the military has completely different units, command systems, doctrines, and legal/regulatory authorities for missile defense – which tries to shoot down threats the enemy has already launched – and for long range offensive strikes – which could keep the enemy from launching in the first place, or at least from getting off a second salvo, by destroying launchers, command posts, and targeting systems. While generals and doctrine-writers have talked about “offense-defense integration” for almost two decades, Green says, the concept remains shallow and incomplete. “A thorough implementation of ODI would touch almost every aspect of the US military, including policy, doctrine, organization, training, materiel, and personnel,” Green writes. “It would require a fundamental rethinking of terms such as ‘offense' and ‘defense' and of how the joint force fights.” Indeed, it easily blurs into the even larger problem of coordinating all the services across all five domains of warfare – land, sea, air, space, and cyberspace – in what's known as Joint All-Domain Operations. The bifurcation between offense and defense runs from the loftiest strategic level down to tactical: At the highest level, US Strategic Command commands both the nation's nuclear deterrent and homeland missile defense. But these functions are split between three different subcommands within STRATCOM, one for Air Force ICBMs and bombers (offense), one for Navy ballistic missile submarines (also offense), and one for Integrated Missile Defense. In forward theaters, the Army provides ground-based missile defense, but those units – Patriot batteries, THAAD, Sentinel radars – belong to separate brigades from the Army's own long-range missile artillery, and they're even less connected to offensive airstrikes from the Air Force, Navy, and Marine Corps. The Navy's AEGIS system arguably does the best job of integrating offense and defense in near-real-time, Green says, but even there, “different capabilities onboard a given ship can come under different commanders,” one with the authority to unleash Standard Missile interceptors against incoming threats and the other with the authority to fire Tomahawk missiles at the enemy launchers. This division of labor might have worked when warfare was slower. But China and Russia have invested massively in their arsenals of long-range, precision-guided missiles, along with the sensors and command networks to direct them to their targets. So, on a lesser scale, have North Korea and Iran. The former deputy secretary of defense, Bob Work, warned of future conflicts in which “salvo exchanges” of hundreds of missiles – hopefully not nuclear ones – might rocket across the war zone within hours. It's been obvious for over a decade that current missile defense systems simply can't cope with the sheer number of incoming threats involved, which led the chiefs of the Army and Navy to sign a famous “eight-star memo” in late 2014 that called, among other things, for stopping enemy missiles “left of launch.” But that approach would require real-time coordination between the offensive weapons, responsible for destroying enemy launchers, command posts, and targeting systems, and the defensive ones, responsible for shooting down whatever missiles made it into the air. While Navy Aegis and Army IBCS show some promise, Green writes, neither is yet capable of moving the data required among all the users who would need it: Indeed, IBCS is still years away from connecting all the Army's defensive systems, while Aegis only recently gained an offensive anti-ship option, a modified SM-6, alongside its defensive missiles. As two Army generals cautioned in a recent interview with Breaking Defense, missile defense and offense have distinctly different technical requirements that limit the potential of using a single system to run both. There are different legal restrictions as well: Even self-defense systems operate under strict limits, lest they accidentally shoot down friendly aircraft or civilian airliners, and offensive strikes can easily escalate a conflict. Green's 35-page paper doesn't solve these problems. But it's useful examination of how complex they can become. https://breakingdefense.com/2020/07/future-missile-war-needs-new-kind-of-command-csis/

  • Comment les drones collaboratifs vont-ils bouleverser le marché des avions de combat ?

    11 avril 2023 | International, Aérospatial

    Comment les drones collaboratifs vont-ils bouleverser le marché des avions de combat ?

    Depuis son arrivé sur le marché international des avions de combat il y a une quinzaine d’années, le F-35 Lighting II de Lockheed-Martin s’est largement taillé la part du lion lors des compétitions internationales, avec des commandes fermes émanant de pas moins de 14 forces aériennes en dehors des Etats-Unis. Et la dynamique ne semble pas vouloir se tarir, avec de nombreux autres pays, donc 5 pays européens (Allemagne, Espagne, Grèce, Republique Tchèque et Roumanie) ayant annoncé leur intention de s’en équiper à court ou moyen terme. Dans de nombreux cas, l’appareil américain s’est imposé au terme d’une compétition l’opposant à d’autres chasseurs américains et européens, notamment le Rafale français, le Gripen suédois, le Typhoon européen ou encore le Super Hornet de Boeing. Lors de chacune d’elles, le Lighting II fut déclaré vainqueur, notamment du fait de sa conception plus récente, mais également de sa furtivité, sachant également que le poids politique et militaire des Etats-Unis jouèrent à plein dans de nombreux cas.

Toutes les nouvelles