5 novembre 2018 | Local, Aérospatial

QinetiQ Target Systems and Canadian UAVs Sign MOU for Commercial and Military UAV Services in Canada

CALGARY, Nov. 5, 2018 /CNW/ - QinetiQ Target Systems, the largest UAV manufacturer in Canada, and Canadian UAVs (CUAVs), Canada's leading unmanned aviation solutions provider for enterprise and military applications, is proud to announce that they have signed a Memorandum of Understanding (MoU), outlining how the two companies will work together to bring combined 'best of breed' solutions for military and commercial markets.

The agreement focuses on providing services to clients requiring long range, endurance and payload capacity primarily with the Skeldar V200, Mosquito UHV-T Group 2 UAV and the class 1 UAV Snyper. With manufacturing and operations facilities in Medicine Hat and Calgary as well as satellite locations across the country including at major naval bases on both coasts, the partnership is perfectly placed to provide direct services for both the commercial, civil and military markets in Canada.

"We are thrilled to partner with CUAVs. CUAVs provide outstanding UAV services and expertise, and we are confident that this partnership will meet and exceed the requirements of our existing and new UAV clients in Canada. We are also actively pursuing export opportunities to further leverage our joint capabilities", commented Vincent Malley, Director of Business Development at QinetiQ Target Systems.

"Canadian UAVs is delighted to be working closely with QinetiQ Target Systems. They have been a UAV provider to the military for over three decades and we believe our current and future clients will benefit greatly from our comprehensive combined capacity and expertise. We are very excited for the future of unmanned aviation in Canadaand we believe this joint offering will have significant positive implications for the further advance of this industry." said Sean Greenwood, President, and CEO of Canadian UAVs".

Notes for Editors:

About QinetiQ

  • Listed on the London Stock Exchange (LSE: QQ.L), QinetiQ is a leading science and engineering company operating primarily in the defence, security and aerospace markets. Our customers are predominantly government organisations including defence departments, as well as international customers in other targeted sectors.
  • Visit our website www.QinetiQ.com
  • Follow us on LinkedIn and Twitter @QinetiQ
  • Consult our privacy policy

About Canadian UAVs

Canadian UAVs is a Calgary-based solutions provider focused on safety-first data acquisition for unmanned aerial vehicle applications. CUAVs provides a range of custom and innovative UAV solutions for industrial environments where advanced imaging is necessary for surveying on an iterative or fixed point basis. Using advanced technology to monitor and acquire data about industrial assets, the company provides a viable advantage for clients and enterprises seeking to mitigate risk.

SOURCE Canadian UAVS

For further information: Please contact, QinetiQ Press Office on Tel: +44 (0) 1252 39 3500 or email: PressOffice@QinetiQ.com; Contact: Sean Greenwood (403) 796-5102 or visit our website: http://CanadianUAVs.ca

https://www.newswire.ca/news-releases/qinetiq-target-systems-and-canadian-uavs-sign-memorandum-of-understanding-for-commercial-and-military-uav-services-in-canada-699634171.html

Sur le même sujet

  • Think The F-35 Is Impressive? Then 6th Generation Fighters Will Blow Your Mind

    17 décembre 2019 | Local, Aérospatial

    Think The F-35 Is Impressive? Then 6th Generation Fighters Will Blow Your Mind

    by Kris Osborn (Washington, D.C.) Drone fighter jets, hypersonic attack planes, artificial intelligence, lasers, electronic warfare and sensors woven into the fuselage of an aircraft - are all areas of current technological exploration for the Air Force as it begins early prototyping for a new, 6th-Generation fighter jet to emerge in the 2030s and 2040s. While the initiative, called Next Generation Air Dominance(NGAD), has been largely conceptual for years, Air Force officials say current “prototyping” and “demonstrations” are informing which technologies the service will invest in for the future. “We have completed an analysis of alternatives and our acquisition team is working on the requirements. We are pretty deep into experimenting with hardware and software technologies that will help us control and exploit air power into the future,” Gen. James Holmes, Commander, Air Combat Command, told reporters at the Association of the Air Force Air, Space and Cyber Conference. Part of the progress with the program, according to Air Force Acquisition Executive William Roper, is due to new methods of digital engineering. “I have spent six months with our industry leaders and NGAD team looking at examples of applied digital engineering. I'm impressed with what they have done,” Roper. Digital engineering, as Roper explains it, brings what could be called a two-fold advantage. It enables weapons developers to assess technologies, material configurations and aircraft models without needing to build all of them -- all while paradoxically enabling builders to “bend metal” and start building prototypes earlier than would otherwise be possible. “The reward is more than the risk,” Roper said, speaking of the need to “try something different” and pursue newer acquisition methods which at times results in prototyping earlier in the process than the traditional process typically involves. The Air Force Research Laboratory has been working with the acquisition community on digital engineering techniques, often explored through modeling and simulation, for many years. “Digital engineering is another exciting area and we see the opportunity to accelerate the pace of moving things from the bench level of science and technology into a system, integrating concepts into an operational campaign model,” Tim Sakulich, Executive Lead for Implementing the Air Force S&T Strategy and Air Force Research Laboratory Lead for Materials and Manufacturing, told Warrior in an interview. Current work on a futuristic 6th-gen fighter - to come after and fly alongside upgraded F-35s -- includes development of stealthy drone fighters, hypersonic flight, lasers, new precision weaponry and advanced AI able organize targeting data in milliseconds. While all of these things are of course key parts of the equation, the Air Force Penetrating Counter Air/NGAD program is equally focused on information exchange itself as a defining element of future war. Such an approach, looking beyond isolated systems and weapons themselves, envisions expansive “networked” combat with war platforms operating as “nodes” in a larger warfare system of weapons and sensors working together in real time. “This approach is one that views military operations in terms of wholistic elements of an information-shooter-effector complex. That will require a lot more going into the design of the next generation of combat aircraft than how fast and far it can fly - or what the numbers of weapons it can carry,” Ret. Lt. Gen. David Deptula, former planner of the US air attacks in Operation Desert Storm and current Dean of the The Mitchell Institute for Aerospace Studies , told Warrior Maven in an interview. The NGAD program, which traces its history to the Air Force's “Air Superiority 2030 Flight Plan,” envisions the possibility of a “family of capabilities.” Holmes explained that this study began by examining more than 650 different ideas for 6th-Gen combat, which were then narrowed down to merely a few. Directed by the Air Force Chief of Staff, service weapons developers who worked on the study have been working in Enterprise Capability Collaboration (ECCT) teams designed to pursue next-generation air superiority. “We are moving into a future where aircraft need to be looked at as not just elements of their own, but as a system of information nodes - sensor - shooter - effectors. It is about creating an entire system of systems that is self-forming and self-healing with a greater degree of awareness than an adversary can achieve, and a much greater degree of survivability,” Deputla said. Northrop Grumman, Lockheed Martin's Skunk Works and Boeing's Phantom Works are all among a handful of industry developers already working on prototype 6th Gen planes and advanced technologies - intended to align with key elements of the Air Force vision. The Air Force itself, while not yet decided upon a particular platform or fixed set of new technologies, is moving quickly beyond the conceptual realm into the active exploration of weapons, sensors, technologies and networks. “There are maybe two to three companies that can build high-performance tactical aircraft,” Roper said. Next-generation stealth technology is also of course a large focus of the technical equation. Newer radar absorbing coating materials, improved IR suppressants or thermal signature management, evolved radar-eluding configurations and acoustic reduction technologies offer a window into current areas of developmental focus. A 2013 Essay by the NATO Parliamentary Assembly Science and Technology Committee discusses the evolution of advanced heat reduction technologies built into the “skin” of an aircraft. “To become low-observable in multiple spectrums, advanced skins manage a plane's heat distribution to foil radar, infrared, and thermal detection systems. These skins do this by distorting or eliminating heat distribution to restructure its thermal shape. They may also be able to heat up or cool down all parts of an aircraft's surface to perfectly match the surrounding atmosphere, making it virtually undetectable,” the report, titled “The Future of Combat Aircraft: Toward a 6th Generation Aircraft,” writes. The Air Force B-21 Raider, a new stealth bomber expected to emerge in the mid 2020s, is said by developers to incorporate a new generation of stealth - but very few details are available. Engine development is yet another area of major leap-ahead technological focus, according to the NATO Parliamentary Assembly report. Emerging “Variable Cycle Engines” introduce a third air stream into an engine, which can be controlled by the pilot, the essay explains. The new engines reportedly massively increase an aircraft's reach, fuel efficiency and speed. “By opening or closing the third air stream, the pilot can adjust the fuel intake of the jet engine and optimize its performance,” the report states.​ Fighter-jet launched laser weapons, expected to be operational by the mid 2020s, are of course part of the planning for 6th-Generation fighters. Targeting and sensor technology, coupled with advanced guidance systems, are progressing so quickly that ships, fighter jets and land assets can no longer rely upon an existing threat envelope. Simply put, all US military systems will increasingly become more vulnerable as enemies acquire more drones, high-speed fighter jets and longer-range precision weaponry - all enabled by AI-fortified long-range sensors and targeting technology. This includes the emergence of advanced enemy fighter jets, ships, ballistic missiles and weapons such as land-based anti-ship missiles, all further necessitating the need for information and combat awareness in warfare. The pace of advancement in computer processing speeds, miniaturization and AI also promise to bring new things to air combat. Algorithms able to instantly gather, compile and organize ISR data and perform real-time analytics will bring faster targeting and attack systems to fighters. AI-enabled real time analytics will, for instance, bring an ability to compare new sensor information against vast databases of relevant data in milliseconds. Information dominance, therefore, could among other things enable a fighter jet to both launch attacks and also function as an aerial ISR node. Operating as part of a dispersed, yet interwoven combat sensor network, a fighter could transmit combat relevant data to air assets, ground-based weapons, command and control centers, Navy ships and satellites. If a ship, ground or air commander has occasion to see or learn of an incoming attack at greater distance, he or she is obviously much better positioned to defend it. Perhaps, for instance, a medium-range ballistic missile attack is airborne, approaching land based artillery formations or a Carrier Strike Group - what might a Commander do? Should the attack be met with a ground-based interceptor, jammed with electronic warfare technology, hit with a laser or thrown off course in some other way? What if a fighter jet, configured to function as an aerial node in a larger interwoven combat network, were able to detect the approaching attack earlier in its trajectory? From beyond the horizon? Perhaps the jet might itself be positioned to attack, intercept or dismantle the approaching missile - or at least provide early warning to the weapons intended target. In this case, more “time” simply means more options to inform a commander's decision cycle. Referring to this emerging tactical complex as a “combat cloud,” Deptula posited that, for instance, an aircraft such as an F-35 could cue or alert an Aegis Navy Cruiser about an incoming attack, therefore offering ship-based radar, fire control and interceptor weapons a vastly improved envelope with which to take out an attack. Thus, an interconnected web of attack, targeting and information nodes can better sustain operations should one node be destroyed, and “sensor-to-shooter” time can be massively accelerated. https://nationalinterest.org/blog/buzz/think-f-35-impressive-then-6th-generation-fighters-will-blow-your-mind-105587

  • Davie Shipyard joins Irving, Seaspan in national shipbuilding program | CBC News

    4 avril 2023 | Local, Naval

    Davie Shipyard joins Irving, Seaspan in national shipbuilding program | CBC News

    Prime Minister Justin Trudeau hailed the inclusion of Quebec's Davie Shipyard in the federal government's national shipbuilding program Tuesday as a major step forward for national industrial policy.

  • Supporting defence innovation – Innovative Solutions Canada launches new defence challenges | Soutenir l'innovation en matière de défense – Solutions innovatrices Canada lance de nouveaux défis en matière de défense

    7 avril 2022 | Local, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

    Supporting defence innovation – Innovative Solutions Canada launches new defence challenges | Soutenir l'innovation en matière de défense – Solutions innovatrices Canada lance de nouveaux défis en matière de défense

    Supporting defence innovation – Innovative Solutions Canada launches new defence challenges Innovative Solutions Canada (ISC) recently launched six new Calls for Proposals in its defence testing stream. ISC is seeking pre-commercial innovative prototypes that can be tested in real life settings and address a variety of defence priorities within the Government of Canada. The Testing Stream aims to procure, test and evaluate innovative late stage pre-commercial prototypes in the following areas: • Digital Enablers and Cybersecurity • UAS and Drone-related infrastructure • Enhanced Warfighting • Training and in-Service support • Enhanced Soldier systems • Smart Sustain and Fleet Optimization The purpose of this call for proposals is to create pools of pre-qualified innovations that Canada may select from to address a broad range of the Government of Canada organizations' requirements. Check the Innovative Solutions Canada web site for eligibility requirements and apply by 14:00 April 22, 2022. Soutenir l'innovation en matière de défense – Solutions innovatrices Canada lance de nouveaux défis en matière de défense Solutions innovatrices Canada (SIC) a récemment lancé six nouveaux appels à propositions dans le cadre de son volet mises à l'essai en défense. SIC est à la recherche de prototypes novateurs pré-commerciaux qui peuvent être testés en situation réelle et qui répondent à diverses priorités de défense du gouvernement du Canada. Le volet mise à l'essais vise à acquérir, à tester et à évaluer des prototypes novateurs pré-commerciaux de stade avancé dans les domaines suivants : • Outils numériques habitants et cybersécurité • Infrastructure liée aux systèmes de surveillance aérienne sans pilote et aux drones • Amélioration de la conduite de la guerre • Formation et soutien en service • Systèmes du soldat améliorés • Soutien intelligent et optimisation de la flotte Le but de cet appel à propositions est de créer des bassins d'innovations préqualifiées parmi lesquelles le Canada pourra choisir afin de répondre à un large éventail de besoins des organisations du gouvernement du Canada. Consultez le site Web de Solutions innovatrices Canada pour connaître les conditions d'admissibilité et présentez votre application d'ici 14h00 le 22 avril 2022.

Toutes les nouvelles