28 janvier 2019 | Local, Aérospatial

Plus question pour le Canada de se retirer du très coûteux programme des F-35 américains

Par Stéphane Parent | francais@rcinet.ca

Le responsable de l'approvisionnement militaire au ministère de la Défense révèle que le Canada, l'un des neuf pays partenaires du programme de mise au point des F-35, n'a pas planifié de s'en retirer.

Il semble qu'Ottawa ira de l'avant avec le versement de dizaines de millions de dollars pour le développement de cet avion de chasse F-35, même si le gouvernement fédéral continue d'étudier la pertinence ou non d'acheter ces appareils pour remplacer près d'une centaine de CF-18 qui ont plus de 40 ans d'usure.

Le F-35 figure parmi les quatre modèles qui seront évalués à partir du printemps prochain dans un appel d'offres de 19 milliards, qui résultera dans l'acquisition de 88 nouveaux avions de combat.

Le Canada a investi plus de 500 millions dans le programme des F-35 au cours des 20 dernières années, dont 54 millions l'an dernier.

Son prochain paiement annuel doit être fait ce printemps, et il y en aura sans doute d'autres, étant donné que l'appel d'offres n'est pas censé se conclure avant 2021 ou 2022.

Ce versement annuel permet au Canada de demeurer pendant encore un an membre du club des neuf partenaires dans le projet du futur avion de chasse F-35, dont la mise au point connaît des déboires majeurs.

La stratégie de rester dans le camp du F-35

Le Canada demeure donc résolument dans le camp de l'aviation militaire américaine avec l'Australie, le Danemark, l'Italie, la Norvège, les Pays-Bas, le Royaume-Uni et la Turquie.

Ces pays pourront soumettre des offres pour les contrats de milliards de dollars liés à la fabrication et à l'entretien des avions de chasse, mais aussi bénéficier de rabais s'ils décident d'en acheter.

D'autres modèles de rechange proposés sont de conception européenne – le Gripen de Saab, le Typhoon du consortium Eurofighter et le Rafale de Dassault – et Ottawa privilégie une conception

http://www.rcinet.ca/fr/2019/01/24/plus-question-pour-le-canada-de-se-retirer-du-tres-couteux-programme-des-f-35-americains/

Sur le même sujet

  • Low-risk capability: Boeing says Block III Super Hornet offers Canada proven performance and predictable costing

    14 avril 2020 | Local, Aérospatial

    Low-risk capability: Boeing says Block III Super Hornet offers Canada proven performance and predictable costing

    by Chris Thatcher Jim Barnes admits that when he arrived in Canada in 2012 to take up business development for Boeing Defense, Space & Security, long-term production of the F/A-18E/F Super Hornet was precarious. By his own estimate, the line that so far has delivered over 600 fighter jets since the mid-1990s appeared ordained to close by 2018 without new customers. “Now, it is a completely different story because of the U.S. Navy's commitment to Block III,” he said in a recent interview with Skies. “They need advanced fighters on their carrier decks and the airplane they hoped would be joining that deck isn't being delivered in a timely manner, so it opened up the opportunity for the Block III.” Under a multi-year procurement contract, the U.S. Navy will acquire 78 of the advanced aircraft through 2024. Moreover, it has begun a service life modification (SLM) program that will see all or most of its fleet of about 450 Block II Super Hornets upgraded with Block III systems through 2033. The first two were delivered in February. Boeing will deliver the first Block III testbed aircraft to the U.S. Navy later this spring to begin carrier trials of the computing and networking systems, in advance of the first operational aircraft in early 2021. “Right now, there is no planned retirement date for the Super Hornet,” noted Barnes, now the director of Fighter Programs in Canada. “It will be a mainstay on carrier decks for decades to come.” Delays in rolling out Lockheed Martin's F-35C Lightning II – ‘C' for carrier variant – undoubtedly spurred renewed interest in the Block III Super Hornet. But the aircraft has also benefited from a collaborative spiral approach to technology development that has ensured new systems are only introduced when they are combat ready. Many of the improved capabilities sought by the Navy for the Block III were first pioneered or trialled on the Block II. Enhanced capabilities and healthy F/A-18E/F production and SLM lines in St. Louis, Mo., and San Antonio, Texas, are part of a package Boeing hopes will resonate with the Canadian government and Royal Canadian Air Force (RCAF) when they evaluate the contenders to replace Canada's 30-year-old legacy F/A-18A/B Hornets. When the request for proposals (RFP) finally closes on June 30 – it was recently extended from March 30 at the “request of industry,” according to the government – Boeing will propose the equivalent of a U.S. Navy Block III aircraft with an instrumented landing system that was previously integrated on Australian and Kuwaiti variants. The Super Hornet is among three candidates – the others are the Lockheed Martin F-35A Lightning II and Saab Gripen E – vying to replace the Air Force's remaining 76 CF-188 Hornets. The acquisition and sustainment project, known as the Future Fighter Capability Project (FFCP), for 88 advanced fighter jets is valued between $15 billion and $19 billion. The formal RFP was issued on July 23, 2019, and all three supplier teams (which include the aircraft manufacturer and representative government) had to submit preliminary security offers by Oct. 4, outlining how they intend to meet Canada's 5 Eyes and 2 Eyes security and interoperability requirements. “The Super Hornet is a low risk program,” said Barnes. “We only integrate [new] technology when it is ready to reduce risk of schedule and cost, and outpace the threat. And what comes with that next-generation capability is predictable and affordable costs, not only for acquisition, but also for the [operational] lifecycle.” Cost and capability Comparing aircraft costs is always problematic. The process by which a fighter is acquired can significantly affect the final price, and Canada would buy the Super Hornet under a government-to-government foreign military sale, which can inflate the cost by as much as 30 per cent. But a multi-year procurement for the Block III in the U.S. president's budget for fiscal 2020 projected a cost of about US$66 million per aircraft, and estimates in the past two years have suggested a price of US$70 million. “The cost for Canada will depend on how many aircraft they buy and when they are taking delivery, but that's a great place to start,” said Barnes. The more important figure for Boeing, though, is the operating cost. The current cost per flight hour for the Super Hornet is around US$18,000, well below the F-35A, which Lockheed Martin officials recently told Skies is above US$30,000 and striving to reach US$25,000 by 2025. “If you do the math on 88 airplanes flying for 30 years at about 250 hours per year, that is billions of dollars in savings over the life of that platform,” noted Barnes. The Block III program will also extend the Super Hornet to a 10,000-flight-hour airframe for Navy operations. Given that the RCAF, through life extension programs, has managed to push the CF-188 well beyond its intended 6,000 flight hours, that increased airframe life bodes well for an air force that doesn't operate in a highly corrosive saltwater environment, slam its jets down on short carrier decks or take off from catapults, noted Ricardo Traven, Boeing's former F/A-18 Super Hornet chief test pilot and currently the lead test pilot for the 787 Dreamliner. “It is 10,000 [airframe hours] for the Navy; I really don't know what it could be for an air force. It is one strong airframe.” The Block III configuration introduces significant upgrades, including conformal fuel tanks (CFT), enhanced coatings to reduce radar signature, advanced mission computers and data links, and a single, customizable wide-area multi-function display. It also includes improvements originally planned for the Block II such as a centreline drop tank with a networked infrared search and track (IRST) sensor and satellite communications (SATCOM) system. Many of these will be critical to meeting the RCAF's stated mission requirements, but Boeing is hoping to gain some credit for capabilities that are not specifically part of the RFP. Side-by-side, the Super Hornet boasts a much larger airframe compared to the legacy Hornet. But that added wing span and extra flex means more fuel, weapons and electronics, and greater manoeuvrability than smaller competitors, said Traven, a former major in the RCAF from southern Ontario. “You have a bigger airplane that is more manoeuvrable, and can fly slower than the legacy fighter on approach because of those big areas, which is important when coming into land on a short, snowy or wet runway in forward operation locations like Inuvik,” he said. “You don't have to flare at all, you can plant the airplane on the first few metres of runway on touchdown. And the landing gear is very rugged. The Super Hornet has two nose gear tires – most others have one – and that counts on wet runways and snow.” The conformal fuel tanks expand the Super Hornet's standard combat air patrol mission range by about 20 per cent or increase the loiter time by roughly 30 minutes, said Barnes. A clean Super Hornet carries 14,000 pounds of fuel, the same as a legacy Hornet with two extra fuel tanks, noted Traven. “Take away the drag of the pylon and tanks and you can see that the Super Hornet will go significantly farther on a clean airplane.” At a time when the RCAF has limited strategic tanking and is poised to retire the tactical air-to-air refueling provided by the CC-130H Hercules, the Super Hornet offers a unique feature: It can serve as its own tanker. If tanking isn't readily available, the possibility of adding a fifth jet to support a four-ship of fighters responding to a NORAD quick reaction alert mission could be “a game changer,” noted Traven. As part of spiral technology development, the Block III replaces the previous two mission computers with a Distributed Targeting Processor-Networked (DTP-N), an onboard system that when combined with the Navy's future Targeting Tactical Network Technology (TTNT) will allow data sharing at speeds and volume that greatly exceed current Link 16 tactical data exchange capabilities. Multiple Block III Super Hornets with DTP-N and the longwave IRST sensor integrated into the centreline nose tank “can solve targeting and the distance equation, which was almost impossible with a single ISRT,” said Traven of what he called an anti-stealth capability. “You can target stealth airplanes at very long range without the radar because you can process its location. First, you can locate it based on the heat signature, and you can process the distance and speed and tracking by having multiple sources talking to each other through this distributed processing targeting network. With the upgraded DTP-N, combined with TTNT, it is checkmate for the whole fifth-gen argument. The amount of information we can share is unbelievable.” He emphasized that the U.S. military, not aircraft manufacturers, would establish the data protocols by which fighters communicate information and would not permit a closed network dictated by one type of aircraft. Boeing has long disputed the stealth argument, maintaining the Super Hornet incorporates enough stealthy technology, including enhancements to the Block III, to perform the broad range of missions. Traven said the Navy has taken a pragmatic approach, asking for as much stealth as possible without sacrificing the capabilities that are important to its mission sets. “That advanced processor, DTP-N, and the advanced data link, TTNT, and the advanced communication, the SATCOM, were all proven on the EA-18G Growler. That is the Super Hornet way of low-risk integration of advanced capabilities,” added Barnes. Though the debate about one versus two engines has faded in recent years, Traven remains a believer in the twin engine. Based on RCAF experience flying the NORAD mission deep into the Arctic and conducted missions across the North Atlantic, he said that distance and the unexpected remain factors that can trump reliability. While he doesn't dispute the dependability of next-generation single engines, even the best can't account for a wayward Canada goose. “I need two engines because of all the unknowns, especially on approach to Inuvik when you see a [Canada] goose go by that can take out your engine, or the chunk of ice that goes down the intake on takeoff, or the hydraulic line that wasn't tightened exactly right. All of those things are never included in the engine reliability argument.” Mission systems and aircraft performance will be paramount in any Air Force evaluation, but the ease of transition from the CF-188 to the Super Hornet may also earn Boeing points. In interviews with Skies at the U.S. Navy's Fleet Replacement Squadron and at the Center for Naval Aviation Technical Training Unit, both in Norfolk, Va., pilots and maintenance technicians described conversion programs from the F/A-18C to the E of about three months for pilots and four to six months for techs, depending on the systems. “A lot of that training transfers one for one,” observed Traven, noting the similarity of most systems in the cockpit and throughout the aircraft. Just as important, all the ground support equipment (GSE) and tooling is the same, meaning equipment at operating squadrons and forward bases would not need to be replaced. Both Traven and Barnes observed that while there was mention of infrastructure in the RFP, there was no discussion of the support systems and even runway lengths that might have to change with other aircraft. “I think that has been lost in this whole discussion,” said Traven. “It is a big deal and I hope they are considering that in an appropriate manner,” added Barnes. “When you are already operating legacy Hornets, the requirement to get current maintainers and pilots up to speed on a Super Hornet is much less than it would be starting from scratch.” Value proposition As part of its bid, Boeing has reactivated the team that successfully delivered the CF-188 Hornet in the 1980s, including L3 Harris MAS, Peraton, CAE, Raytheon Canada and GE Canada. “What we are trying to do is leverage the billions of dollars of investment the government has already made in the fighter support infrastructure and utilize that on the Super Hornet,” said Barnes. Over the years after the CF-188 was acquired, companies like L3 Harris MAS in Mirabel, Que., developed detailed knowledge about every airframe in the fleet. Boeing is not proposing a wholesale transfer of Block III intellectual property (IP), but rather a gradual handover. “As Canada got more familiar with the [legacy Hornet] platform, more intellectual property was exchanged,” said Barnes. “Our plan would be to do that same approach on the Super Hornet. We'll do as much as we can on day one, but it will probably be an evolution over time. The Canadian companies certainly understand that.” Mission system technologies would have to be part of a government-to-government negotiation, he added, but would likely be part of an incremental transfer over time. The IP discussion is part of Boeing's proposal to meet Industrial and Technological Benefits (ITB) obligations. The three bidders will have the option to sign a binding ITB agreement and commit to investing in Canadian content up to 100 per cent of the contract value, or agree to a nonbinding economic benefit agreement. “We will sign the binding agreement,” said Roger Schallom, senior manager for International Strategic Partnerships. As part of its value proposition, Boeing will also meet the specific requirements around investment in small- and medium-sized businesses, innovation, skill development and long-term sustainment. Fulfilling a 100 per cent Canadian content value obligation often means spending far more than the actual contract value, said Schallom. On a program valued over $15 billion, manufacturing work packages could translate into as much as $30 billion in actual work for Canadian companies over the 25 years Boeing would have to fulfil its ITB commitment. For example, Boeing's ITB obligation for the CH-147F Chinook helicopter program was about $1.3 billion. “We are going to spend in purchase orders about $2.6 billion of work in Canada,” he added. More important to companies that have supported the CF-188 would be the 30-plus years of guaranteed in-service support (ISS) contracts. “Those are the billions of dollars that could be left on the table if you go with the nonbinding solution,” emphasized Barnes. “You have to give your ISS companies credit for getting specific sustainment percentages in the RFP,” added Schallom. “They are wielding a pretty big hammer right now. If you go nonbinding, [that economic return] is a big question mark.” It could be argued Boeing Defense, Space & Security missed an opportunity to claim an edge in the FFCP when, in 2017, the Canadian government withdrew the planned purchase of 18 Super Hornets. The aircraft were being considered to fill an interim capability gap in the RCAF's ability to simultaneously conduct NORAD and NATO missions, but the purchase was cancelled over a trade dispute between Boeing Commercial and Bombardier's C Series airliner program. But, with the Canadian fighter competition about to finally close, Boeing clearly believes it's well positioned with an advanced fighter jet that can meet all mission requirements well into the future, while returning significant economic benefits to Canadian industry for a predictable and affordable cost. It's an offer Canada will have to weigh carefully. https://www.skiesmag.com/features/low-risk-capability-boeing-says-block-iii-super-hornet-offers-canada-proven-performance-and-predictable-costing

  • Innovation requires experience: AIAC panel

    23 novembre 2017 | Local, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

    Innovation requires experience: AIAC panel

    Posted on November 23, 2017 by Chris Thatcher When the federal government delivered its 2017 budget last spring, innovation was mentioned 262 times and served as the focal point for numerous new initiatives. The centrepiece was the Innovation and Skills Plan, a series of proposals that included additional venture capital funding, new support for innovation in key growth areas and superclusters, and Innovation Canada, an initiative to bring siloed projects and funding programs for innovators under one roof. More recently, the government in its 2017 defence policy introduced IDEaS (Innovation for Defence Excellence and Security), a program currently seeking Treasury Board approval that will invest $1.6 billion over the next 20 years to generate solutions to complex challenges across the Canadian Armed Forces. It will also speed up the development of new technologies through contests, sandbox trials, research networks and other programs. The devil is always in the details of such initiatives, and all are in the early stages. Still, they have been widely welcomed by the aerospace sector. However, innovation is not for the inexperienced, four seasoned small business executives cautioned during the annual Canadian Aerospace Summit on Nov. 7. While government programs often appear to be tailored to recent graduates with youthful enthusiasm, true innovation doesn't succeed without business acumen. “It takes experience; it takes patience,” said Gabe Batstone, a self-described serial entrepreneur with over two decades in the tech sector, who recently launched Ottawa-based Contextere, an artificial intelligence firm focused on applications for blue collar workers that has secured funding from BMW, Lockheed Martin and Samsung. Aerospace and defence programs can take years to mature and regulations invariably play a big part in the introduction of any new technology, he said. “To bring emergent technology into complex organizations, it's about procurement [expertise], about sales, about relationships, about [understanding] regulations. The technology is the least difficult part.” In fact, tried and true business practices focused on customer relations are essential to entrepreneurial success. “I was never worried about the technology,” said John Mannarino, president of Montreal-based Mannarino Systems and Software, a company that has grown from a one-man consultancy to over 60 employees specializing in engineering services and airborne software. Rather, innovation has come from listening to customers and suppliers, and that takes time. “I had to learn.” In an address to the Summit, hosted by the Aerospace Industries Association of Canada, Michael Anderson, president of Saab North America, observed that innovation does not happen without an element of risk. “The organization that has the best ability to effectively mitigate risk while providing an environment that promotes risk-taking will eventually be a successful innovator and, of course, a successful business.” But there is a point at which small companies cannot take on more risk, said Dave Muir, president and CEO of Ottawa-based Gastops, a health monitoring firm that has developed sensor and analysis tools for complex aircraft and engines. “The larger companies are pushing risk way more down into the supply chain than they were. As a small fish there is only so far out from the shore you can swim before bad things happen.” The pace of change is also creating challenges for small business, and it's not limited to technology. Development cycles, production schedules, and time to market have all been compressed in recent years. For Patrick Thera, president of SED, a division of Calian that has been developing commercial satellite and ground systems solutions for over 50 years, that means being shrewd about where and with whom to invest. “Key collaborations are very important,” he said, noting that “coopetition” has sometimes made for unexpected partners. “One day you're competing against a fellow company and the next you're partnering with that company.” Gastops, too, has invested far more than previously in establishing collaborative networks to further its innovation. “I strongly believe, especially for a small company, that you cannot do innovation in the aerospace industry by yourself alone in the back room,” said Muir. Adapting to the pace of change can be especially difficult if you don't have the necessary specialized skills in your company. All four executives acknowledged the challenge of finding top software and engineering talent when much larger companies in every sector are pursuing the same people. But they also argued that as products become more sophisticated, expertise in procurement, project management, intellectual property and marketing is critical to innovation and a company's growth. When you are competing against cool start-ups with world-changing visions, “you have to go a long way to show people that you do offer a lot of things that they can take pride in, that you save lives every day with the technologies you create,” said Thera. https://www.skiesmag.com/news/innovation-requires-experience-aiac-panel

  • Achat de F-35 par Ottawa | Des retombées encore furtives

    12 janvier 2023 | Local, Aérospatial

    Achat de F-35 par Ottawa | Des retombées encore furtives

    D’importantes questions demeurent sans réponse même si l’achat de 88 avions de combat F-35 par Ottawa est officiel. On ignore par exemple où sera situé l’atelier de réparation et qui formera les pilotes qui s’installeront aux commandes des chasseurs. L’enjeu des retombées du contrat conclu avec Lockheed Martin est de taille pour l’industrie aérospatiale québécoise.

Toutes les nouvelles