3 août 2024 | International, Aérospatial, C4ISR
23 janvier 2024 | International, Terrestre
Today, the Honourable Bill Blair, Minister of National Defence, participated virtually in the 18th Ukraine Defense Contact Group (UDCG) meeting, hosted by United States Secretary of Defense Lloyd J. Austin III. The meeting brought together representatives from more than 50 countries, who reaffirmed their commitment to providing Ukraine with the critical military support it needs.
3 août 2024 | International, Aérospatial, C4ISR
13 octobre 2020 | International, Aérospatial, Terrestre
Jen Judson WASHINGTON — The U.S. Army's ambitious first Project Convergence, an exercise that measured the progress of the service's modernization strategy within its future operational concept, concluded last month, but the service already has a sense of what it wants to accomplish in 2021. The series of exercises and experiments that made up the Project Convergence “campaign of learning” took place at Yuma Proving Grounds, Arizona. The event, held over a six-week period in the harsh desert at America's southwest border, was deemed the most important Army event outside of global operations, and future annual iterations are expected to continue shaping the future force. “We're going to have even further transformation of the battlefield geometry,” Brig. Gen. Wally Rugen, who is in charge of future vertical lift modernization, told Defense News in an Oct. 6 interview ahead of the Association of the U.S. Army's annual conference. “We want to go deeper. We made it to 61.9 kilometers, across the forward line of troops in the scenario we fought in 2020,” Rugen said. “We will want to go farther than that.” The Army will also join forces with all of the other military services in 2021, according to Gen. John Murray, the head of Army Futures Command. It will be up to those other services the kinds of capabilities and technologies they each bring to the equation, but the intention is to have the Air Force's F-35 fighter jet integrated into the architecture of the operation. Earlier this month, the Army and the Air Force signed a two-year collaboration agreement to develop a concept for Joint All-Domain Command and Control, or JADC2, which carries over the Army's future war-fighting doctrine, “Multi-Domain Operations” — which is still in the concept phase — to the world of joint operations. JADC2 essentially connects sensors to shooters — which was the bread and butter of Project Convergence this year — across the joint force. The exercise involved about 500 people at Yuma; most were data collectors. The event represented a platoon-sized operation. But in 2021, according to Murray, an entire operational headquarters element will be brought in to drive the learning in terms of how “we organize and how we fight the capability in the future.” Additionally, the Army wants to bring in a multidomain task force from Joint Base Lewis-McChord in Washington state, which would likely be the centerpiece of Project Convergence 21, said Brig. Gen. John Rafferty, who leads the Army's long-range precision fires efforts, which is the service's top modernization priority. There will also be other operational units brought in “to help explore and to help test on a larger scale,” Rafferty told Defense News in an interview this month. Starting in 2021, the exercise will have a foreign flavor. The United Kingdom signed on to participate next year, Murray said, and Australia may join. In 2022, the focus of the exercise will build significantly in terms of involving coalition forces. The Army also plans to tie Project Convergence to other exercises happening at roughly the same time. For example, since the event has an objective to operate in denied and degraded environments, the Army's Position Navigation and Timing Assessment Exercise will likely be a part of Project Convergence in 2021. In its first year, the Army had elements from the modernization teams focused on future vertical lift, long-range precision fires, the next-generation combat vehicle, the network, and positioning, navigation and timing. Next year, more teams will join, including those dedicated to air and missile defense, soldier lethality, and the Synthetic Training Environment. The Army also plans to involve its developmental missile, meant to replace the Army Tactical Missile System for a long-range shot. The Precision Strike Missile — a weapon with an expected range of 500 kilometers — will likely have a test shot that aims to surpass that during Project Convergence. The missile has an aggressive test schedule next year. The Extended Range Cannon, or ERCA, which participated this year, will have new technology rolled in by 2021, Rafferty said. The service also plans to demonstrate the Excalibur Hit-to-Kill capability, which is one of the competitors for the Dual-Purpose Improved Conventional Munition replacement effort. “That really is the lethality component of ERCA at extended ranges,” he added. The future vertical lift team will bring its 20mm gun planned for its future attack reconnaissance aircraft to the event as well as its Modular Effects Launcher prototype, which will carry both lethal and nonlethal effects to deploy from the air, Rugen said. The Army has begun firing live rounds from the gun, and will fire roughly 285,000 rounds through it this fiscal year. The Air-Launched Effects, or ALE, capability played a critical role in Project Convergence this year, and is to return with increased capability and improved technology. “The lower tier of the air domain is decisive,” Rugen said. “I think '20 proved that yet again like it did in '19. We need a broader acceptance of that from the joint force and from defensewide. There is a capability to show up at the time and place of our choosing with vertical lift from relative sanctuary and have operational effects, and that's really what we intend to show in '21.” The network underpins everything at Project Convergence, and improvements will continue to be made so the network that shows up in 2021 is more robust and geared beyond what it was originally designed to do, which is to support a tactical brigade. “I think you'll see better discipline on our data management and message traffic, message formats, which, again, is going to help that machine-to-machine targeting,” Rugen said. To further improve the ground and air assets connectivity, there will be a few more waveforms incorporated “to see if they can produce the bandwidth we need.” The Army wants the mesh network established through ALEs to be “more resilient and have greater goals on distance,” he added. FIRESTORM is also expected to return next year. The system uses artificial intelligence to help select the optimal shooter for engagement. Surrogate robotic combat vehicles and an optionally manned fighting vehicle will continue to play a major role as well. The hope is also to bring in the Army's Integrated Air and Missile Defense Battle Command System, known as IBCS, which is currently undergoing development to connect sensors and shooters for the purpose of countering missile threats. The system recently completed a by-and-large successful limited-user test and will head into its initial operational test and evaluation in 2021. Murray noted that if the test and evaluation conflicts with the Army's schedule, the system will not participate in next year's Project Convergence, noting that the evaluation is a top priority for the program to remain on track. The Army is also hoping the Integrated Visual Augmentation System — which will provide soldiers with AI-enhanced goggles that assist with navigation, targeting, and advanced night and thermal vision — will be ready for next year's experimentation. Overall, the Army has collected “70-plus technologies” — to include a few capabilities from the Defense Advanced Research Projects Agency — that it might incorporate into the event, Murray said, noting not all 70 will end up participating. https://www.defensenews.com/digital-show-dailies/ausa/2020/10/12/transforming-battlefield-geometry-whats-to-come-in-project-convergence-2021/
16 septembre 2020 | International, Aérospatial, Naval, Autre défense
James Chew The recently published viewpoint “Can the Pentagon Spend More Smartly?” (AW&ST Aug. 31-Sept. 13, p. 58) highlights the consequences of increased dependence on technology to maintain an edge. In fact, the core issue of the exponential growth in cost associated with the linear growth in technology capability is highlighted in Norman Augustine's 1982 book Augustine's Laws. Specifically, two of “Augustine's laws” focus on what needs to be avoided within the Defense Department acquisition community. One of the laws states: “In the year 2054, the entire defense budget will purchase just one aircraft. This aircraft will have to be shared by the Air Force and Navy three and a half days each per week, except for leap year when it will be made available to the Marines for the extra day.” Additionally, the book highlights the Defense Department's growing dependence on electronic systems with this law: “After the year 2015, there will be no airplane crashes. There will be no takeoffs either, because electronics will occupy 100% of every airplane's weight.” Even if these laws seem outlandish, the book's underlying lessons still ring true today. For decades, the Pentagon was the driving force behind the development of microelectronics until, interestingly, the commercial sector ultimately ended up in the driver's seat. To share a little history, the Army-funded Micromodule project was the precursor of the integrated circuit and the Very-Large Scale Integration project created today's electronic design automation companies and resulted in the development of multichip wafer fabrication technology. The fact is, today's microelectronics technology would not exist, or would almost certainly be less sophisticated, if not for a few brave and visionary Defense Department project officers. The electronics industry is likely the most visible and significant example of a commercial market that not only transitioned from but significantly advanced technology developed by the U.S. military. Without the government investment, the device on which I am writing this article, and the one on which you are reading it, would perhaps not exist. There are lessons to be learned from both the public and private sectors, and best practices from each can certainly be applied cross-functionally to optimize outcomes. For example, the commercial electronics industry has enabled electronic systems companies to develop high-quality, sustainable and modernizable products on a “can't-miss-Christmas” schedule. Much of the industry's success is due in large part to an adherence to “first-pass success” and the computational software tools and processes that enable it. These tools and processes have been developed by companies that invest significant portions of their annual sales—some up to 40%—into research and development (that is “IR&D” to you in the Pentagon) and are a result of the intense competition within the unforgiving consumer electronics market. These tools and processes, which have institutionalized the product development practice of “emulate before you fabricate,” make up the foundation of on-schedule, on-cost product development. The best-case scenario is that the current Defense Department and defense industry electronic development process matches up with the commercial electronics development process, where they both seek to achieve “first-pass success.” Even if all things were equal, which they aren't, the commercial timeline would still be around 30% that of the defense timeline. Eliminating the need for prototype hardware and the associated tests and reworks is a major reduction in design time and cost. So, after so many years of funding research into electronic design and development, why have the Defense Department and defense industry turned away from the commercial processes that stemmed from that investment? Why aren't these processes being adopted? Congress appreciates that transitioning to commercial electronics best practices is the basis for the much-desired firm, fixed-price acquisition. The fiscal 2017 National Defense Authorization Act, reinforced by the fiscal 2021 Defense Appropriations Act, has an entire section on transitioning to commercial electronics best practices. Program offices and some individuals within the defense industrial base are seeking to better understand the commercial industry-proven way to design electronics that reduce design schedules by at least 70%, producing “first-pass success” electronic system designs that are immediately sustainable and agilely modernizable. The answer is out there—adopt commercial best practices to save time and money. With nontraditional companies entering the picture (what's the name of that space company?), the public sector should have plenty of motivation to implement tools and processes that are prevalent and successful in today's private sector. https://aviationweek.com/defense-space/budget-policy-operations/opinion-how-break-exponential-pentagon-cost-growth