13 octobre 2020 | International, Aérospatial, Terrestre

Transforming battlefield geometry: What’s to come in Project Convergence 2021

WASHINGTON — The U.S. Army's ambitious first Project Convergence, an exercise that measured the progress of the service's modernization strategy within its future operational concept, concluded last month, but the service already has a sense of what it wants to accomplish in 2021.

The series of exercises and experiments that made up the Project Convergence “campaign of learning” took place at Yuma Proving Grounds, Arizona. The event, held over a six-week period in the harsh desert at America's southwest border, was deemed the most important Army event outside of global operations, and future annual iterations are expected to continue shaping the future force.

“We're going to have even further transformation of the battlefield geometry,” Brig. Gen. Wally Rugen, who is in charge of future vertical lift modernization, told Defense News in an Oct. 6 interview ahead of the Association of the U.S. Army's annual conference.

“We want to go deeper. We made it to 61.9 kilometers, across the forward line of troops in the scenario we fought in 2020,” Rugen said. “We will want to go farther than that.”

The Army will also join forces with all of the other military services in 2021, according to Gen. John Murray, the head of Army Futures Command. It will be up to those other services the kinds of capabilities and technologies they each bring to the equation, but the intention is to have the Air Force's F-35 fighter jet integrated into the architecture of the operation.

Earlier this month, the Army and the Air Force signed a two-year collaboration agreement to develop a concept for Joint All-Domain Command and Control, or JADC2, which carries over the Army's future war-fighting doctrine, “Multi-Domain Operations” — which is still in the concept phase — to the world of joint operations.

JADC2 essentially connects sensors to shooters — which was the bread and butter of Project Convergence this year — across the joint force. The exercise involved about 500 people at Yuma; most were data collectors. The event represented a platoon-sized operation.

But in 2021, according to Murray, an entire operational headquarters element will be brought in to drive the learning in terms of how “we organize and how we fight the capability in the future.”

Additionally, the Army wants to bring in a multidomain task force from Joint Base Lewis-McChord in Washington state, which would likely be the centerpiece of Project Convergence 21, said Brig. Gen. John Rafferty, who leads the Army's long-range precision fires efforts, which is the service's top modernization priority.

There will also be other operational units brought in “to help explore and to help test on a larger scale,” Rafferty told Defense News in an interview this month.

Starting in 2021, the exercise will have a foreign flavor. The United Kingdom signed on to participate next year, Murray said, and Australia may join. In 2022, the focus of the exercise will build significantly in terms of involving coalition forces.

The Army also plans to tie Project Convergence to other exercises happening at roughly the same time. For example, since the event has an objective to operate in denied and degraded environments, the Army's Position Navigation and Timing Assessment Exercise will likely be a part of Project Convergence in 2021.

In its first year, the Army had elements from the modernization teams focused on future vertical lift, long-range precision fires, the next-generation combat vehicle, the network, and positioning, navigation and timing. Next year, more teams will join, including those dedicated to air and missile defense, soldier lethality, and the Synthetic Training Environment.

The Army also plans to involve its developmental missile, meant to replace the Army Tactical Missile System for a long-range shot.

The Precision Strike Missile — a weapon with an expected range of 500 kilometers — will likely have a test shot that aims to surpass that during Project Convergence. The missile has an aggressive test schedule next year.

The Extended Range Cannon, or ERCA, which participated this year, will have new technology rolled in by 2021, Rafferty said.

The service also plans to demonstrate the Excalibur Hit-to-Kill capability, which is one of the competitors for the Dual-Purpose Improved Conventional Munition replacement effort. “That really is the lethality component of ERCA at extended ranges,” he added.

The future vertical lift team will bring its 20mm gun planned for its future attack reconnaissance aircraft to the event as well as its Modular Effects Launcher prototype, which will carry both lethal and nonlethal effects to deploy from the air, Rugen said.

The Army has begun firing live rounds from the gun, and will fire roughly 285,000 rounds through it this fiscal year.

The Air-Launched Effects, or ALE, capability played a critical role in Project Convergence this year, and is to return with increased capability and improved technology.

“The lower tier of the air domain is decisive,” Rugen said. “I think '20 proved that yet again like it did in '19. We need a broader acceptance of that from the joint force and from defensewide. There is a capability to show up at the time and place of our choosing with vertical lift from relative sanctuary and have operational effects, and that's really what we intend to show in '21.”

The network underpins everything at Project Convergence, and improvements will continue to be made so the network that shows up in 2021 is more robust and geared beyond what it was originally designed to do, which is to support a tactical brigade.

“I think you'll see better discipline on our data management and message traffic, message formats, which, again, is going to help that machine-to-machine targeting,” Rugen said. To further improve the ground and air assets connectivity, there will be a few more waveforms incorporated “to see if they can produce the bandwidth we need.”

The Army wants the mesh network established through ALEs to be “more resilient and have greater goals on distance,” he added.

FIRESTORM is also expected to return next year. The system uses artificial intelligence to help select the optimal shooter for engagement.

Surrogate robotic combat vehicles and an optionally manned fighting vehicle will continue to play a major role as well.

The hope is also to bring in the Army's Integrated Air and Missile Defense Battle Command System, known as IBCS, which is currently undergoing development to connect sensors and shooters for the purpose of countering missile threats. The system recently completed a by-and-large successful limited-user test and will head into its initial operational test and evaluation in 2021.

Murray noted that if the test and evaluation conflicts with the Army's schedule, the system will not participate in next year's Project Convergence, noting that the evaluation is a top priority for the program to remain on track.

The Army is also hoping the Integrated Visual Augmentation System — which will provide soldiers with AI-enhanced goggles that assist with navigation, targeting, and advanced night and thermal vision — will be ready for next year's experimentation.

Overall, the Army has collected “70-plus technologies” — to include a few capabilities from the Defense Advanced Research Projects Agency — that it might incorporate into the event, Murray said, noting not all 70 will end up participating.

https://www.defensenews.com/digital-show-dailies/ausa/2020/10/12/transforming-battlefield-geometry-whats-to-come-in-project-convergence-2021/

Sur le même sujet

  • US Special Operations Command picks Anduril to lead counter-drone integration work in $1B deal

    26 janvier 2022 | International, Aérospatial

    US Special Operations Command picks Anduril to lead counter-drone integration work in $1B deal

    Anduril will provide counter-drone services to U.S. Special Operations Command for the next decade.

  • Argentina inks deal to buy 24 F-16 jets from Denmark

    17 avril 2024 | International, Aérospatial

    Argentina inks deal to buy 24 F-16 jets from Denmark

    The contract, which is worth $320 million, also includes reconnaissance pods and training armaments, such as AIM-9X and AIM-120 missiles.

  • Navy Hires Boeing To Develop A Very Fast And Long-Range Strike Missile Demonstrator

    21 octobre 2020 | International, Aérospatial, Naval, Sécurité

    Navy Hires Boeing To Develop A Very Fast And Long-Range Strike Missile Demonstrator

    The Navy will use the new high-speed demonstrator to help refine its requirements for future stand-off anti-ship and land-attack missiles. oeing has received a contract to help develop a ramjet-powered high-speed missile demonstrator for the U.S. Navy. The company says that the design will aid the service in identifying requirements for future air-launched missiles, possibly ones able to reach hypersonic speeds, that its F/A-18E/F Super Hornets and other combat aircraft within its carrier air wings will be able to employ against targets on land or at sea. The company's Defense, Space & Security division announced that the Naval Air Warfare Center Weapons Division (NAWCWD), part of Naval Air Systems Command (NAVAIR), had awarded it this contract, worth approximately $30 million, on Oct. 20, 2020. The work will be conducted under what is officially called the Supersonic Propulsion Enabled Advanced Ramjet (SPEAR) program. The goal is to conduct the first flight of the demonstrator in late 2022. "We have a talented team of engineers to meet the challenging technical demands and schedule timeline that the SPEAR program requires," Steve Mercer, the Program Manager at Boeing for the SPEAR effort, said in a statement. "We look forward to working with Navy experts to advance technologies for the Navy's future capabilities." It's not entirely clear what kind of missile demonstrator the Navy is looking for exactly for the SPEAR program. The acronym includes the word "supersonic," but Boeing's press release cites its prior work on the X-51A Waverider, an experimental air-breathing hypersonic vehicle that featured a scramjet engine. Hypersonic speed is generally defined as anything above Mach 5. At the same time, Boeing also highlighted its work on "the Variable Flow Ducted Rocket propulsion system under the Triple Target Terminator program in 2014." The Triple Target Terminator program, or T-3, which the Defense Advanced Research Projects Agency (DARPA) led, explored concepts for very-long-range air-launched missiles that would be able to engage hostile aircraft, cruise missiles, and air defense threats on the ground, hence the name. A Variable Flow Ducted Rocket propulsion system is a kind of rocket ramjet, a relatively well-established concept at its core, in which gas produced by burning a source of solid fuel is mixed with compressed air fed into a combustion chamber via a duct or air intake to produce thrust. Advanced designs that allow for varying the flow of gas into the combustion chamber make it possible to throttle the thrust and adjust the speed of the vehicle the ramjet is powering. With this in mind, it's worth noting that NAWCWD issued a request for information regarding "Solid Fuel Ramjet Propulsion Manufacture/Test" in March, though it is unclear if that contracting notice is related in any way to SPEAR. In addition, Boeing's press release says that it will "co-develop" the SPEAR demonstrator, but it's unclear if this means another company is involved in the effort or that the Navy's own engineers and scientists will be directly assisting with the work. The website of the Naval Aviation Systems Consortium (NASC) lists a contract award to the company relating to the SPEAR program on Aug. 31, valued at just over $32 million, but for the demonstrator's airframe only. NASC "has been formed to support the technology needs of the Naval Air Warfare Centers (NAWCs) and the Naval Air Systems Command (NAVAIR) through the use of Other Transaction (OT) Authority," according to the site. There is no mention of this award in the Pentagon's daily contracting announcement for Aug. 31, which is supposed to include any deal valued at more than $7 million. The SPEAR contract that Boeing has just announced also does not appear in today's notice, so it's unclear when the Navy formally awarded these two contracts and whether or not they are, in fact, the same one. The War Zone has already reached out to Boeing for more information about its involvement in the SPEAR effort. Whatever the company's role in the project is or isn't, the press release certainly indicates that it will be a stepping stone to the development of future anti-ship and land-attack missiles that will be integrated onto aircraft in the Navy's carrier air wings. This includes the services F/A-18E/F Super Hornets, another Boeing product, a significant number of which eventually slated to go through the Block III upgrade program, which will add a host of advanced features that you can read about in more detail in this past War Zone piece. At the same time, the clear indication is that any operational weapons that follow-on from the SPEAR effort could be added to the arsenal of the service's F-35C Joint Strike Fighters, as well. An F/A-18E Super Hornet, at left, and an F-35C Joint Strike Fighter, at right, share space on the flight deck of the Nimitz class aircraft carrier USS Abraham Lincoln during tests in 2018. "The contract award comes after the Department of Defense requested information from the defense industry to help the Navy determine technical requirements of future carrier-based land and sea strike weapons systems," Boeing's press release said. "The SPEAR flight demonstrator will provide the F/A-18 Super Hornet and carrier strike group with significant improvements in range and survivability against advanced threat defensive systems," Mercer, the firm's SPEAR program manager, added. Very-long-range, high-speed strike weapons could be very valuable for the Navy's carrier air wings, especially as potential near-peer adversaries, such as China and Russia, continue to develop and field increasingly longer-range and otherwise more capable surface-to-air missile systems and associated radars and other sensors. Aircraft carriers and their associated strike groups and air wings are also increasingly at risk from various anti-access and area-denial capabilities, further underscoring the need for weapons with greater range and that are able to prosecute targets faster to help ensure their survival. At present, the primary air-launched stand-off anti-ship and land-attack missiles available to them are the AGM-84D Harpoon anti-ship cruise missile, the AGM-84H/K Standoff Land Attack Missile-Expanded Response (SLAM-ER), and the AGM-158C Long Range Anti-Ship Missile (LRASM), all of which are subsonic. The service is in the process of developing the AGM-88G Advanced Anti-Radiation Guided Missile-Extended Range (AARGM-ER), which will have at some surface strike capabilities and will also serve as the basis for a Stand-in Attack Weapon (SiAW) for the U.S. Air Force. However, the exact speed and range of this weapon are unclear. The Navy is also developing a powered cruise missile derivative of its AGM-154 Joint Stand-Off Weapon (JSOW) glide bomb. Boeing's SPEAR announcement comes as the U.S. military as a whole is pursuing a wide array of new hypersonic strike weapons, including unpowered boost-glide vehicles and air-breathing missiles. The Air Force is working toward its own "Expendable Hypersonic Multi-Mission Air-Breathing Demonstrator" as part of a program called Mayhem, which is linked to work on advanced turbine-based combined cycle engines. That service is also working closely with DARPA on the Hypersonic Air-breathing Weapon Concept (HAWC) project and its own Hypersonic Attack Cruise Missile (HACM) effort. Lockheed Martin, which is leading the development of the HAWC missile, has proposed a follow-on design for use by the Navy in the past. In August, the Air Force had said it was looking at designs from Boeing, as well as Lockheed Martin and Raytheon, to meet a requirement for "a solid-rocket boosted, air-breathing, hypersonic conventional cruise missile, air-launched from existing fighter/bomber aircraft." It's not clear if that announcement was related to HACM or not, but the following month, Boeing released a computer-generated promotional video featuring a B-1 bomber firing what the company described as a notional hypersonic missile. The company has subsequently released a more detailed still rendering featuring this conceptual missile that, at least visually, appears to be an air-breathing design. All told, it's hardly surprising that the Navy is also in the process of pursuing its own high-speed strike missiles to arm its carrier aircraft. There's no reason to believe that the weapons that emerge from SPEAR won't be suitable for integration onto land-based platforms, such as the service's P-8A Poseidon maritime patrol aircraft, as well. Whatever SPEAR's final design looks like, it's an important step forward for the Navy in providing this capability to its combat aircraft fleets in the future. https://www.thedrive.com/the-war-zone/37170/navy-hires-boeing-to-develop-a-very-fast-and-long-range-strike-missile-demonstrator

Toutes les nouvelles