16 septembre 2020 | International, Aérospatial, Naval, Autre défense

Opinion: How To Break Exponential Pentagon Cost Growth

James Chew

The recently published viewpoint “Can the Pentagon Spend More Smartly?” (AW&ST Aug. 31-Sept. 13, p. 58) highlights the consequences of increased dependence on technology to maintain an edge. In fact, the core issue of the exponential growth in cost associated with the linear growth in technology capability is highlighted in Norman Augustine's 1982 book Augustine's Laws. Specifically, two of “Augustine's laws” focus on what needs to be avoided within the Defense Department acquisition community.

One of the laws states: “In the year 2054, the entire defense budget will purchase just one aircraft. This aircraft will have to be shared by the Air Force and Navy three and a half days each per week, except for leap year when it will be made available to the Marines for the extra day.”

Additionally, the book highlights the Defense Department's growing dependence on electronic systems with this law: “After the year 2015, there will be no airplane crashes. There will be no takeoffs either, because electronics will occupy 100% of every airplane's weight.”

Even if these laws seem outlandish, the book's underlying lessons still ring true today.

For decades, the Pentagon was the driving force behind the development of microelectronics until, interestingly, the commercial sector ultimately ended up in the driver's seat.

To share a little history, the Army-funded Micromodule project was the precursor of the integrated circuit and the Very-Large Scale Integration project created today's electronic design automation companies and resulted in the development of multichip wafer fabrication technology. The fact is, today's microelectronics technology would not exist, or would almost certainly be less sophisticated, if not for a few brave and visionary Defense Department project officers.

The electronics industry is likely the most visible and significant example of a commercial market that not only transitioned from but significantly advanced technology developed by the U.S. military. Without the government investment, the device on which I am writing this article, and the one on which you are reading it, would perhaps not exist.

There are lessons to be learned from both the public and private sectors, and best practices from each can certainly be applied cross-functionally to optimize outcomes.

For example, the commercial electronics industry has enabled electronic systems companies to develop high-quality, sustainable and modernizable products on a “can't-miss-Christmas” schedule. Much of the industry's success is due in large part to an adherence to “first-pass success” and the computational software tools and processes that enable it. These tools and processes have been developed by companies that invest significant portions of their annual sales—some up to 40%—into research and development (that is “IR&D” to you in the Pentagon) and are a result of the intense competition within the unforgiving consumer electronics market. These tools and processes, which have institutionalized the product development practice of “emulate before you fabricate,” make up the foundation of on-schedule, on-cost product development.

The best-case scenario is that the current Defense Department and defense industry electronic development process matches up with the commercial electronics development process, where they both seek to achieve “first-pass success.” Even if all things were equal, which they aren't, the commercial timeline would still be around 30% that of the defense timeline. Eliminating the need for prototype hardware and the associated tests and reworks is a major reduction in design time and cost.

So, after so many years of funding research into electronic design and development, why have the Defense Department and defense industry turned away from the commercial processes that stemmed from that investment? Why aren't these processes being adopted?

Congress appreciates that transitioning to commercial electronics best practices is the basis for the much-desired firm, fixed-price acquisition. The fiscal 2017 National Defense Authorization Act, reinforced by the fiscal 2021 Defense Appropriations Act, has an entire section on transitioning to commercial electronics best practices. Program offices and some individuals within the defense industrial base are seeking to better understand the commercial industry-proven way to design electronics that reduce design schedules by at least 70%, producing “first-pass success” electronic system designs that are immediately sustainable and agilely modernizable.

The answer is out there—adopt commercial best practices to save time and money. With nontraditional companies entering the picture (what's the name of that space company?), the public sector should have plenty of motivation to implement tools and processes that are prevalent and successful in today's private sector.

https://aviationweek.com/defense-space/budget-policy-operations/opinion-how-break-exponential-pentagon-cost-growth

Sur le même sujet

  • Air Force says KC-46 can refuel planes around the world '€” except one

    19 septembre 2022 | International, Aérospatial

    Air Force says KC-46 can refuel planes around the world '€” except one

    '€œI have 100% confidence in [the Pegasus'] ability,'€ AMC head Gen. Mike Minihan said.

  • Here’s the No. 1 rule for US Air Force’s new advanced battle management system

    10 juillet 2019 | International, Aérospatial, Autre défense

    Here’s the No. 1 rule for US Air Force’s new advanced battle management system

    By: Valerie Insinna LE BOURGET, France, and WASHINGTON — The U.S. Air Force has started work on a data architecture for its Advanced Battle Management System, the family of platforms that will eventually replace the E-8C JSTARS surveillance planes. But the “biblical” rule for the program, according to the service's acquisition executive Will Roper, is that “we don't start talking platforms until the end,” he told Defense News at the Paris Air Show in June. “It is so easy to start talking about satellites and airplanes and forget what ABMS is going to have to uniquely champion, which is the data architecture that will connect them,” Roper explained. “I'm actually glad we don't have big money this year because we can't go build a drone or a satellite, so we've got to focus on the part that's less sexy, which is that data architecture,” he said. “We're going to have to do software development at multiple levels of classification and do it securely. All of those are things that are hard to get people energized about, but they're going to be the make-or-break [undertakings] for this program.” Some initial work has begun on identifying the requirements for ABMS data architecture. The service in March named Preston Dunlap, a national security analysis executive at Johns Hopkins University Applied Physics Laboratory, as the program's “chief architect.” Dunlap will be responsible for developing the requirements for ABMS and ensuring they are met throughout the menu of systems that will comprise it. The Air Force Warfighter Integration Center, or AFWIC — the service's planning cell for future technologies and concepts of operation — provided feedback to Dunlap about how ABMS should work, Roper said. The Air Force is still deliberating what ABMS will look like in its final form, although officials have said it will include a mix of traditional manned aircraft, drones, space-based technologies and data links. The effort was devised as an alternative to a replacement for the E-8C Joint Surveillance Target Attack Radar System. While the service first considered a traditional recapitalization program where it would buy new JSTARS aircraft equipped with more sophisticated radars, leaders ultimately backed the more ambitious ABMS proposal, believing it to be a more survivable capability. But defense companies are hungry for more information about the platforms that will comprise ABMS, seeing the opportunity to develop new systems or upgrade legacy ones as a major potential moneymaker. Once the service has defined an ABMS data architecture — which Roper believes will occur before the fiscal 2021 budget is released — it will need to form requirements for the data that will run through and populate it as well as the artificial intelligence that automatically sorts important information and passes it to users. “Maybe one sensor needs to be able to fill a gap that others are creating,” he said. “We're going to have to look at requirements at a systems level and tell satellites that you need to be able to provide this level of data at this refresh rate. UAVs, you need to be able to do this rate and so on and so forth. Once we do that, then we'll be in the traditional part of the acquisition, which will be building those satellites, building those UAVs.” The Air Force intends to conduct yearly demonstrations throughout this process, the first of which will involve “ad hoc mesh networking,” which will allow platforms to automatically begin working together and sharing information without human interference. By FY21, full-scale prototyping could start, he said. In the commercial sector, where devices can be seamlessly linked and monitored over the internet, this concept is known as the internet of things. But that construct — where companies build technologies from the get-go with open software — is difficult to replicate in the defense world, where firms must meet strict security standards and are protective of sharing intellectual property that could give competitors an edge. “Openness in the internet of things makes sense because you can monetize the data,” Roper said. “That's not going to exist for us, so we're going to have to have a contracting incentive that replicates it. The best theory we have right now is some kind of royalty scheme that the more open you are and the more adaptation we do on top of your system, the more you benefit from it.” The service wants to hold a series of industry days to see whether such a construct would be appealing to defense companies, and how to structure it so that it will be fair and profitable. One unanswered is how to incentivize and compensate defense firms that build in new software capability. “If you create the system that allows us to put 100 apps on top of it, you benefit differently than if we can only put one. But the details are going to be difficult because maybe that one app is super important,” Roper said. “But if we can't replicate profit and cash flow on which their quarterlies depend, then they're going to have to go back to the old model of saying they are for open [architecture] but secretly giving you closed.” https://www.defensenews.com/digital-show-dailies/paris-air-show/2019/07/09/rule-no1-for-air-forces-new-advanced-battle-management-system-we-dont-start-talking-platforms-until-the-end/

  • SENOP receives significant orders from the Finnish Defence Forces for Night Vision and Target Acquisition devices

    10 mai 2023 | International, C4ISR

    SENOP receives significant orders from the Finnish Defence Forces for Night Vision and Target Acquisition devices

    Senop will deliver the equipment and lifecycle upgrades to the Finnish Defence Forces between 2023 and 2025

Toutes les nouvelles