5 août 2019 | International, Naval

Land Systems Integration Team Is Leader in Model-Based Systems Engineering

By C. Michaela Judge, Naval Information Warfare Center Atlantic Public Affairs

CHARLESTON, S.C. (NNS) -- The Land Systems Integration (LSI) Division at Naval Information Warfare Center (NIWC) Atlantic continues to be an enterprise leader in Model-Based Systems Engineering (MBSE) for their work on land systems modernization and integration.

MBSE is an engineering approach that utilizes a common, digital tool suite allowing all team members – from engineer to sponsor – to have awareness, line-of-sight and an understanding of the interaction between the various moving parts across the systems engineering and project lifecycle.

LSI's Vehicular Technology Transition (VTT) team incorporates the full range of MBSE techniques into their systems engineering projects to support the Marine Corps and has had great success in continuing this approach in their daily work.

“What makes LSI and our team specifically successful is the depth of knowledge in implementation of using the MBSE Tool Suite,” said Tim Turner, VTT team lead. “Our engineering work isn't radically different than any other engineering groups across the Command; it's how we're putting the data in the system and making it transparent to everyone that needs to have access to it.”

Though engineers have been performing systems engineering in some capacity for decades, using this model-based approach provides an added advantage to deliver effective and timely solutions to the warfighter.

“Our MBSE Tool Suite is a set of seamlessly integrated engineering lifecycle management tools that work together as one,” said Jacob Witmer, VTT team Military GPS User Equipment (MGUE) project lead. “We use these tools to manage requirements and architectures, plan projects, track changes, manage quality, and provide an enterprise library management system where you catalog, organize, use, reuse, manage, and report on any type of software, technology, or business asset.”

In the vehicle transition domain, the VTT team utilized MBSE techniques to solve real-world challenges for the warfighter. Most recently, they used MBSE to conduct global positioning system (GPS) integration work conducted on the Joint-Light Tactical Vehicle, the MGUE Program's lead platform.

“When we look at all of the people our team has to work with on this integration project, we have to manage a lot of different data, to include where the trucks are manufactured, where GPS is managed, the performance level of the GPS card, the truck integration and more,” said Witmer. “There are a lot of players, managing a lot of data in a lot of different formats from different geographic parts of the country. That's really what the MBSE Tool Suite is designed to do – manage, connect and link the data to see how they impact each other.”

One cost-avoidance benefit of using the MBSE Tool Suite, in time and man-hours, includes the ability to quickly build reports.

“We can build 150-page project requirements documents in three minutes because the data is already in the Tool Suite,” said Ryan Longshore, VTT team technical lead. “There is an investment in time and energy upfront in loading the data, but a report that would take 30 to 90 days is done in a matter of minutes and everything from that project is captured in the report.”

The team's use of MBSE is not only essential to connecting and maintaining data across a project, but also a necessary resource in developing physical models and solutions in a fraction of the time previously needed to fulfill a warfighter requirement.

“Our team works within the Systems Integration Laboratory (SIL) to design and test on multiple vehicular platforms,” said Turner. “The lab allows us to execute MBSE across all team functions, from mission thread to risk analysis or program management.”

The team maintains physical models for all of the vehicle platforms they support. When a requirement from a sponsor arrives, the team can use tools within the SIL to design and print a three-dimensional piece of hardware and test it on an existing model before they touch a physical vehicle. The team conducts engineering, mechanical and software-related integration testing and design work all within the laboratory.

“It's all about testing upfront, learning upfront, failing faster and learning from it and moving on and improving on the design,” said Turner.

As the team designs and tests within the lab, they also update the MBSE Tool Suite is to capture lessons learned, integration challenges and real-time project data for all team members to access.

“The beauty of the suite being so integrated is that it doesn't matter what type of systems engineering methodology a project uses, the tools can be tailored to meet a myriad of engineering processes and organizing the data by methodology saves countless hours in digging around trying to find historical artifacts,” said Witmer.

The team can now complete an integration project that previously took 18 to 36 months as quickly as six to nine months, without sacrificing quality, thanks to the value of MBSE.

With VTT and other teams reaping the benefits of MBSE, NIWC Atlantic created a training and workforce development path to work toward a Command-wide adoption of this method. Communities of interest, industry engagements and training events on MBSE methods are a few of the efforts implemented to date.

The VTT uses these training approaches, to a smaller-scale, to continue to encourage MBSE implementation and help employees understand the power of using a model-based approach to apply agility in executing warfighter solutions.

“We're seeing the benefits and through MBSE my team has the flexibility to fail fast and learn a lot upfront,” said Turner.

The team's success with the MBSE Tool Suite is a Command-wide example of how the transparency and connectivity of engineering data help to provide integration solutions to NIWC Atlantic customers with a high confidence of success.

As a part of Naval Information Warfare Systems Command, NIWC Atlantic provides systems engineering and acquisition to deliver information warfare capabilities to the naval, joint and national warfighter through the acquisition, development, integration, production, test, deployment, and sustainment of interoperable command, control, communications, computer, intelligence, surveillance, and reconnaissance, cyber and information technology capabilities.

https://www.navy.mil/submit/display.asp?story_id=110447

Sur le même sujet

  • Tunisia receives four T-6C training aircraft from U.S

    18 juillet 2023 | International, Aérospatial

    Tunisia receives four T-6C training aircraft from U.S

    The Tunisian defense ministry said on Tuesday it had received four T-6C training aircraft from the United States, as part of cooperation to renew its fleet of training aircraft for the air force.

  • British ‘Team Tempest’ is itching to enter new fighter design phase this summer

    26 mai 2021 | International, Aérospatial

    British ‘Team Tempest’ is itching to enter new fighter design phase this summer

    An announcement by the Ministry of Defence on a contract starting the next phase of work on the British-led Tempest future combat air program is expected in the next few weeks.

  • HOW HACKED WATER HEATERS COULD TRIGGER MASS BLACKOUTS

    14 août 2018 | International, C4ISR

    HOW HACKED WATER HEATERS COULD TRIGGER MASS BLACKOUTS

    WHEN THE CYBERSECURITY industry warns about the nightmare of hackers causing blackouts, the scenario they describe typically entails an elite team of hackers breaking into the inner sanctum of a power utility to start flipping switches. But one group of researchers has imagined how an entire power grid could be taken down by hacking a less centralized and protected class of targets: home air conditioners and water heaters. Lots of them. At the Usenix Security conference this week, a group of Princeton University security researchers will present a study that considers a little-examined question in power grid cybersecurity: What if hackers attacked not the supply side of the power grid, but the demand side? In a series of simulations, the researchers imagined what might happen if hackers controlled a botnet composed of thousands of silently hacked consumer internet of things devices, particularly power-hungry ones like air conditioners, water heaters, and space heaters. Then they ran a series of software simulations to see how many of those devices an attacker would need to simultaneously hijack to disrupt the stability of the power grid. Their answers point to a disturbing, if not quite yet practical scenario: In a power network large enough to serve an area of 38 million people—a population roughly equal to Canada or California—the researchers estimate that just a one percent bump in demand might be enough to take down the majority of the grid. That demand increase could be created by a botnet as small as a few tens of thousands of hacked electric water heaters or a couple hundred thousand air conditioners. "Power grids are stable as long as supply is equal to demand," says Saleh Soltan, a researcher in Princeton's Department of Electrical Engineering, who led the study. "If you have a very large botnet of IoT devices, you can really manipulate the demand, changing it abruptly, any time you want." The result of that botnet-induced imbalance, Soltan says, could be cascading blackouts. When demand in one part of the grid rapidly increases, it can overload the current on certain power lines, damaging them or more likely triggering devices called protective relays, which turn off the power when they sense dangerous conditions. Switching off those lines puts more load on the remaining ones, potentially leading to a chain reaction. "Fewer lines need to carry the same flows and they get overloaded, so then the next one will be disconnected and the next one," says Soltan. "In the worst case, most or all of them are disconnected, and you have a blackout in most of your grid." Power utility engineers, of course, expertly forecast fluctuations in electric demand on a daily basis. They plan for everything from heat waves that predictably cause spikes in air conditioner usage to the moment at the end of British soap opera episodes when hundreds of thousands of viewers all switch on their tea kettles. But the Princeton researchers' study suggests that hackers could make those demand spikes not only unpredictable, but maliciously timed. The researchers don't actually point to any vulnerabilities in specific household devices, or suggest how exactly they might be hacked. Instead, they start from the premise that a large number of those devices could somehow be compromised and silently controlled by a hacker. That's arguably a realistic assumption, given the myriad vulnerabilities other security researchers and hackers have found in the internet of things. One talk at the Kaspersky Analyst Summit in 2016 described security flaws in air conditioners that could be used to pull off the sort of grid disturbance that the Princeton researchers describe. And real-world malicious hackers have compromised everything from refrigerators to fish tanks. Given that assumption, the researchers ran simulations in power grid software MATPOWER and Power World to determine what sort of botnet would could disrupt what size grid. They ran most of their simulations on models of the Polish power grid from 2004 and 2008, a rare country-sized electrical system whose architecture is described in publicly available records. They found they could cause a cascading blackout of 86 percent of the power lines in the 2008 Poland grid model with just a one percent increase in demand. That would require the equivalent of 210,000 hacked air conditioners, or 42,000 electric water heaters. The notion of an internet of things botnet large enough to pull off one of those attacks isn't entirely farfetched. The Princeton researchers point to the Mirai botnet of 600,000 hacked IoT devices, including security cameras and home routers. That zombie horde hit DNS provider Dyn with an unprecedented denial of service attack in late 2016, taking down a broad collection of websites. Building a botnet of the same size out of more power-hungry IoT devices is probably impossible today, says Ben Miller, a former cybersecurity engineer at electric utility Constellation Energy and now the director of the threat operations center at industrial security firm Dragos. There simply aren't enough high-power smart devices in homes, he says, especially since the entire botnet would have to be within the geographic area of the target electrical grid, not distributed across the world like the Mirai botnet. But as internet-connected air conditioners, heaters, and the smart thermostats that control them increasingly show up in homes for convenience and efficiency, a demand-based attack like the one the Princeton researchers describes could become more practical than one that targets grid operators. "It's as simple as running a botnet. When a botnet is successful, it can scale by itself. That makes the attack easier," Miller says. "It's really hard to attack all the generation sites on a grid all at once. But with a botnet you could attack all these end user devices at once and have some sort of impact." The Princeton researchers modeled more devious techniques their imaginary IoT botnet might use to mess with power grids, too. They found it was possible to increase demand in one area while decreasing it in another, so that the total load on a system's generators remains constant while the attack overloads certain lines. That could make it even harder for utility operators to figure out the source of the disruption. If a botnet did succeed in taking down a grid, the researchers' models showed it would be even easier to keepit down as operators attempted to bring it back online, triggering smaller scale versions of their attack in the sections or "islands" of the grid that recover first. And smaller scale attacks could force utility operators to pay for expensive backup power supplies, even if they fall short of causing actual blackouts. And the researchers point out that since the source of the demand spikes would be largely hidden from utilities, attackers could simply try them again and again, experimenting until they had the desired effect. The owners of the actual air conditioners and water heaters might notice that their equipment was suddenly behaving strangely. But that still wouldn't immediately be apparent to the target energy utility. "Where do the consumers report it?" asks Princeton's Soltan. "They don't report it to Con Edison, they report it to the manufacturer of the smart device. But the real impact is on the power system that doesn't have any of this data." That disconnect represents the root of the security vulnerability that utility operators need to fix, Soltan argues. Just as utilities carefully model heat waves and British tea times and keep a stock of energy in reserve to cover those demands, they now need to account for the number of potentially hackable high-powered devices on their grids, too. As high-power smart-home gadgets multiply, the consequences of IoT insecurity could someday be more than just a haywire thermostat, but entire portions of a country going dark. https://www.wired.com/story/water-heaters-power-grid-hack-blackout/

Toutes les nouvelles