7 mars 2023 | International, Aérospatial
Boeing 767 freighter, KC-46 tanker face delivery snags due to fuel tank problem
A new supplier problem has stymied deliveries of Boeing's 767 freighter and KC-46 tanker, the company confirmed on Tuesday.
18 septembre 2018 | International, Aérospatial
Par Benoit Gilson
Ignition - la coentreprise entre Sonaca et Sabena Aerospace créée dans le sillage de Lockheed pour le marché de remplacement des F-16 belges – s'est alliée avec Airbus pour proposer le drone Heron TP allemand à la Défense belge. Une proposition qui concerne l'équipement immédiat en drones, mais aussi, à terme, une participation de la Belgique à son successeur, l'EuroDrone.
Afin de remplacer ses vieux drones B-Hunter, la Défense belge a prévu l'acquisition pour 226 millions d'euros de deux systèmes de drones MALE (Moyenne Altitude Longue Endurance) composés chacun de deux drones. La Belgique prévoit également l'achat ultérieur (à l'horizon 2029-2030) de 4 drones supplémentaires dans le cadre d'un programme européens.
Le SkyGuardian de General Atomics semblait favori pour la première phase mais Airbus entend bien y croire jusqu'au bout en proposant une solution européenne basée sur le Heron TP, un appareil israélien à l'origine qu'Airbus adapte et certifie pour le compte du ministère de la Défense allemand. L'appareil serait livrable en 2021, comme requis par la Défense belge, et est proposé avec plusieurs formules d'acquisitions possibles dans le cadre d'un accord d'Etat à Etat entre la Belgique et l'Allemagne.
Une offre qui compte aussi désormais un volet belge puisqu'Airbus s'est allié à Ignition dans le cadre de la création en Belgique d'un centre de compétences et de vol pour les drones. Mais la proposition d'Airbus ne se limite pas au présent marché. Le géant européen propose qu'Airbus et Ignition travaillent à l'avenir ensemble pour favoriser le développement de nouvelles compétences en Belgique à travers de la participation au programme EuroDrones, lui-même une des pièces du programme Scaf (Système de Combat Aérien du Futur).
Un programme Scaf qui est également un des enjeux du marché de remplacement des F-16 belges. Dans l'hypothèse où la Belgique achèterait un appareil européen – Rafale ou Eurofighter – elle pourrait obtenir son ticket d'entrée dans le programme Scaf. Une perspective s'éloignerait si la Belgique venait à choisir le F-35 de Lockheed.
7 mars 2023 | International, Aérospatial
A new supplier problem has stymied deliveries of Boeing's 767 freighter and KC-46 tanker, the company confirmed on Tuesday.
4 février 2020 | International, Naval
By: David B. Larter ABOARD THE AIRCRAFT CARRIER GERALD R. FORD IN THE VIRGINIA CAPES — The U.S. Navy is trying to find an alternative to shooting down anti-ship missiles with other missiles, and the aircraft carrier Gerald R. Ford could prove useful in this pursuit. A major difference with Ford over its Nimitz-class predecessors is its twin A1B nuclear reactors that produce more than three times the electrical power of the reactors on Nimitz — more than 100 megawatts. That means Ford, with survivability questions looming over aircraft carriers, can support large, power-sucking equipment such as lasers, according to Capt. J.J. Cummings, the Ford' commanding officer. “When you talk about innovation in the Navy, this is where it lives,” Cummings said, referring to his ship. “We're lighter — designed lighter — than Nimitz class. “Nimitz class, she's barreling down pretty good now with a lot of stuff on her, and her electric plant is almost at maximum capacity. We're light and designed to have excess capacity in our electrical system to bring future systems on board.” That's a big advantage for the class, and it's one of the reasons the Navy has pursued the Ford class despite the controversies over buggy new technology and cost overruns. The Ford class is essential for the survivability of carriers, said James Geurts, the Navy's top acquisition official. “Part of the reason Ford is so important is that it gives you the flexibility to generate the next generation of systems you'll need to ensure the carrier can continue to stay survivable,” Geurts said. Killing missiles with missiles Bryan Clark, a retired naval officer and analyst with the Center for Strategic and Budgetary Assessments, said Ford could use a boost in the survivability department and the Ford's powerful reactors could help them get there. “To improve the self-defense on carriers, you could put lasers on there to support that short-range, self-defense capacity,” Clark said. “Because the big problem with lasers right now is power management. You can build a three or four hundred-kilowatt laser, but for one, it's a big footprint so you have to find a ship big enough to put it on; and two, you have to have the power to actually supply it. So you're going to need a capacitor bank somewhere on the ship or you need a generator big enough to provide it continuously. On the Ford, you'd get that." Clark has argued for years that the Navy needs to get away from trying to shoot down missiles with missiles because a saturation attack from Russia, China, Iran, North Korea or anyone else who might have cause to attack a U.S. Navy ship could force a cruiser or destroyer to expend all its missiles and still not have defeated the threat. That's where shorter-range missiles such as the Evolved Seasparrow Missile, which can be packed four per cell in a vertical launch system, and lasers can have a big impact, even if it means the ship has to let missiles get uncomfortably close to the ship before it's taken down. “I think lasers could make a difference for Ford because the technology is pretty mature, you could fit it on the ship and it would address a big challenge for carriers, which is air defense,” Clark said. “You could put several lasers on there and really give a boost to your air defense capacity.” However, it's unlikely lasers could address all threats faced by carriers, Clark said. “It would be effective for cruise missiles up to maybe the supersonic cruise missiles,” Clark said. “Of course, it would also work against small boats and things like that. It may not work that well against hypersonic missiles or ballistic missiles.” https://www.defensenews.com/naval/2020/01/31/with-laser-weapons-coming-the-us-navys-newest-super-carrier-has-space-and-power-to-spare/
1 août 2018 | International, Terrestre, C4ISR
This internal budget battle in the Army could cede the actual battlefield to high-powered Russian and Chinese jammers, electronic warfare advocates fear, with the same lethal consequences for US troops that Ukrainian forces have suffered since 2014. By SYDNEY J. FREEDBERG JR. CAPITOL HILL: Can the Army unite its rival tribes to retake the high-tech high groundof modern warfare, the electromagnetic spectrum? Those are the stakes in the service's ongoing internal struggles over doctrine, organization, and an obscure but critical program known as TLIS, the Terrestrial Layer Intelligence System. Army leaders see TLIS as a powerful synergy between Signals Intelligence (SIGINT), which eavesdrops on and locates enemy transmissions, and Electronic Warfare (EW), which jams those same transmissions and can be used for cyber warfare. But TLIS, as the “intelligence” in its name implies, began as a pure SIGINT system, before it absorbed the former Multi-Function Electronic Warfare (MFEW) program, and there's always the possible it might regress. At least some electronic warriors hear worrying rumors that the more powerful SIGINT branch wants to save money on TLIS by cutting back on its jamming capabilities, leaving it as a passive sensor rather than an active weapon. This internal budget battle in the Army could cede the actual battlefield to high-powered Russian and Chinese jammers, electronic warfare advocates fear, with the same lethal consequences for US troops that Ukrainian forces have suffered since 2014. “The intel people will finally be able to get rid of EW, again, by taking it over, again, and crushing it,” said Col. Jeffrey Church, who until his retirement last year was the most senior Electronic Warfare Officer (EWO) in the Army: There are no EW generals, in stark contrast to SIGINT and cyber. Church was also the last EWO to run the electronic warfare directorate on the Army's Pentagon staff: His immediate successor was an engineer — an expert on bridges and minefields, not electrons. Both the staff directorate and the EWO specialty have since been folded into Army cyber. “Next,” Church predicted in a bitter post on LinkedIn, “they will cancel the intel portions of MFEW they insisted be written into the EW requirements (i.e. when MFEW was folded into TLIS) and thereby kill the MFEW program.” “I don't think your article will affect anything for Army EW,” a weary Church told me. “The only thing that will is when a bunch of our soldiers get killed. Then the Army will act shocked by it and be compelled to bring EW into the force with real gear, real operators, real training and real EW leadership.” Synergy or Tension? From drones to foot troops, radio to radar, networks to GPS, everything in a 21st century military has to send and receive signals through the electromagnetic spectrum — which means everything can be detected, targeted, and disrupted. Russia and China have invested massively in electronic warfare since the end of the Cold War while the US disbanded most EW. Today, while the Navy and Air Forcehave high-cost jamming aircraft — the EA-18G Growler and EC-130H Compass Call respectively — they're too rare, expensive, and over-powered to support small units on the ground. But the US Army's own arsenal consists almost entirely of short-range jammers that fit in backpacks or on Humvees, most of them designed to disable radio detonators for roadside bombs. Meanwhile Russia and China have fleets of heavy trucks packed with high-power EW gear that can scramble US signals hundreds of miles away. The Army's original solution to this problem was called Multi-Function Electronic Warfare (MFEW), a common family of sensors and jammers meant to go on trucks, drones and manned aircraft — eventually. But the service decided to fold MFEW into the land-based TLIS and an as-yet-unnamed airborne counterpart instead. “We are specifically looking at putting SIGINT, EW and cyber on the same platform, both on the ground and in the air,” Maj. Gen. Robert Walters told a July 18 forumorganized by the Association of Old Crows, an EW professional group. As commander of the Army's intelligence center at Fort Huachuca, Ariz., Walters is the Army's lead “proponent” for TLIS requirements, with the cyber center at Fort Gordon, Ga. in a significant supporting role. There's a natural synergy here, Walters said. SIGINT finds the enemy signals and analyzes them, then cyber and electronic warfare can target the weak links in the enemy network. While he didn't say so out loud, that's how it's done by the current masters of the art, the Russians, whose SIGINT and EW officers often sit side by side in the same vehicle so they can quickly coordinate devastating electromagnetic maneuvers, as in Ukraine. But there's also a tension between the two sides. Intelligence naturally wants to keep listening to the enemy signals to find out more, whereas cyber/EW warriors want to shut them down or use them to feed cyber weapons into. Now, you can try to shut down only the enemy's most secure networks so they have to use the ones SIGINT can easily crack. That's what the Russians did against the Ukrainians, forcing them off their military radios onto personal cellphones — but it's not easy to pull off. Second, when EW turns on its jammers, their powerful signal doesn't just disrupt enemy transmissions: It also provides a big target for enemy missiles and artillery radars to home in on. At best, that means the combined SIGINT/EW unit has to relocate frequently, disrupting listening operations. At worst, it means the combined unit blows up in one shot. (You can reduce the risk to your troops by putting the jammers on drones or ground robots operated from a distance by remote control, but that creates a new problem: The enemy can detect, decode and jam your communications with the robots). So how well will the Army balance these tensions? Right now, said one well-connected electronic warfare expert, the intelligence branch is in the driver's seat, and “once again intel has defaulted back to SIGINT, which disappoints me.....It's not looking too good.” This attitude may be overly pessimistic. But there's little cause for optimism in Army's unhappy history of internecine intramural rivalries and cancelled procurement programs. Is Big Six Missing One? The current Army Chief of Staff, Gen. Mark Milley, is trying to make a break with the service's dysfunctional past. He has named six modernization priorities, each with its own Cross Functional Team (CFT), led by a general who can pull in people from across the bureaucracy and put them in one room until they thrash out how to get things done. Those CTFs, in turn, will play a leading role in the new Army Futures Command being stood up in Austin. But electronic warfare has no clear home in this new structure. Of the six priorities — 1) long-range artillery, 2) armored vehicles, 3) aircraft, 4) networks, 5) air & missile defense, and 6) soldier equipment, in that order — the closest fit is with Priority No. 4, the network. That covers all the computerized communication and data systems the Army uses to transmit orders and intelligence: Lose all those and you're back to carrier pigeons. So, understandably, the emphasis of the network Cross Functional Team is on defending the US network from jamming and hacking, not on attacking enemy networks with our own jammers and hackers. A spin-off CFT on Precision Navigation & Timing has a similar defensive focus: How can US forces keep track of where everything is and when it has to happen if the enemy disrupts GPS? For that matter, the entire cyber center at Fort Gordon, despite having responsibility for electronic warfare, evolved when the old Signal Corps school took on a growing role in not just setting up communications networks but defending them. It's only recently taken on an offensive role, and primarily in cyberspace rather than electronic warfare. So all these leading Army organizations have the same focus on defense. Their job is to keep the network working under attack. But defense is not enough on its own. A tank doesn't just need armor: It needs a gun. Maybe a network doesn't just need cybersecurity and resilience against jamming: It needs to be able to attack the other side's network. A rmy Secretary Mark Esper has made clear the Big Six priorities are unlikely to change, so don't expect him to add electronic warfare as Big No. 7 any time soon. But there is still some wiggle room to spin off subsidiary priorities with their own Cross Functional Teams. In fact, from the beginning, there've been eight Cross Functional Teams, not six: The network priority is also supported by that Precision Navigation & Timing CFT, while the soldier equipment CFT spun off a training simulations CFT. Now, that eight-fold structure hasn't changed since the initial announcement in 2016. But there's no fundamental reason why the Army couldn't add a ninth CFT for electronic warfare, supporting the network priority area alongside the PNT team. What this would take — besides a memo from Esper and Milley — would be a fundamental change in how the Army thinks about “the network,” as an offensive weapon instead of a mere technical function. his is a philosophical shift. There's a longstanding tendency in Western militaries to focus on reducing what Clausewitz called the friction and fog of war, the innumerable minor mishaps, miscommunications, and misunderstandings that constantly impede military operations. The ambition to “lift the fog of war” reached its peak of hubris in the “transformation” movement before the invasion of Iraq, where the fog rolled in again unstoppably. Eastern tradition, by contrast, has long seen fog and friction as not only obstacles but weapons: You want to reduce them for your own side, of course, but also to increase them for the enemy. Hence Sun Tzu's maxim that “all warfare is based on deception,” a concept the Russians have embraced with their doctrine of maskirovka and which seems well-suited to the information age. So, instead of treating the network simply as an electromagnetic means to reduce our fog and friction, why not extend the concept to include electromagnetic means to increase the enemy's fog and friction? Instead of an asset to be defended, what if it's a weapon to attack? s the Network a Weapon? There are signs the Army is starting to think this way. At the Capitol Hill forum, Lt. Gen. Stephen Fogarty — current head of Army Cyber Command and former chief of the Cyber Center at Fort Gordon — even talked about the network as a “weapon” and (intentionally or not) echoed Sun Tzu. “We've truly started to operationalize the Army networks,” Fogarty said. “That's the foundational weapons platform for a modern military.” Without the network, he said, you can't do persistent intelligence, surveillance, and reconnaissance (ISR); long-range precision fires (LRPF) with missiles and artillery; logistics; medical evacuation; or command and control (C2, what the Army now calls “mission command”). Now, Fogarty's list is about how the network enables other parts of the Army, rather than the network taking the offensive itself. Still, calling the network a “weapons system” is a long way from the old-school Army view of it as a mere utility, a technical convenience the geeks set up in the back room so the real mencan go up front and fight. Why is the network so fundamental, in Fogarty's view? Because, he said, “our ability to operate and defend that network is what gives our commanders the ability to do two things: to see the adversary and see ourselves.” Once again, Fogarty is not talking about using the network to attack, only to “operate and defend.” Nevertheless, he's sounding an awful lot like Sun Tzu: “If you know the enemy and know yourself, you need not fear the result of a hundred battles.” Or as Fogarty put it, with less elegance but more specificity: “In the multi-domain battlespace, not of the future but of today, against peer and near-peer adversaries, whoever has the ability to sense, understand, decide, and act faster than their opponent (will) enjoy decisive advantage.” (He's referring to an updated version of the classic OODA loop: Observe, Orient, Decide, & Act). That requires bringing formerly disparate specialties together in new ways, said Lt. Gen. Scott Berrier, the deputy chief of Army staff for intelligence (G-2). “Our primary challenge is one of integration,” he told the AOC forum. “Future forces must integrate SIGINT, electronic warfare, and cyber capabilities to provide situational awareness” — i.e. know yourself, know your enemy — “and enable commanders to deliver kinetic and non-kinetic fires” — i.e. both physical attacks, like missiles, bombs, and shells, and intangible ones, like hacking and jamming. This transition can be intellectually and culturally wrenching, Berrier admitted. “While the tribes have come together, there are still members of the tribes that are a little obstinate,” he said to laughter. For those who don't see the inherent benefits, however, Berrier added, “another reason we're doing it is that the Chief of Staff of the Army told us to do it.” https://breakingdefense.com/2018/07/army-wrestles-with-sigint-vs-ew/