31 juillet 2020 | International, Aérospatial

Guam’s air defense should learn lessons from Japan’s Aegis Ashore

By: and

The head of U.S. Indo-Pacific Command said last week his top priority is establishing an Aegis Ashore system on Guam by 2026. New air defenses will help protect U.S. citizens and forces in Guam; but as Japan's government found, Aegis Ashore may not be the best option to protect military and civilian targets from growing and improving Chinese and North Korean missile threats.

Guam is pivotal to U.S. and allied military posture in the Western Pacific. Home to Andersen Air Force Base and Apra Harbor, it is far enough from adversaries like China and North Korea to negate the threat from more numerous short-range missiles but close enough to support air and naval operations throughout the Philippine Sea and South and East China seas.

Although the current Terminal High Altitude Area Defense battery on Guam can defend against some ballistic missiles, its single AN/TPY-2 radar is vulnerable and cannot provide 360-degree coverage. Moreover, THAAD's focus on high altitudes makes it a poor fit to defeat lower-flying aircraft or cruise missiles that would likely be used by China's military against Guam. The island needs a new air defense architecture.

Aegis Ashore is highly capable, but has its own limitations. Designed primarily to counter small numbers of ballistic missiles, its fixed missile magazine and radar would be vulnerable to attack and would fall short against the bombardment possible from China.

Instead of installing one or more Aegis Ashore systems on Guam, a more effective air and missile defense architecture would combine the latest version of the Aegis Combat System with a disaggregated system of existing sensors, effectors, and command-and-control nodes. A distributed architecture would also be scalable, allowing air and missile defenses to also protect U.S. citizens and forces operating in the Northern Marianas.

Guam's geography enables longer-range sensing than would be possible from a ship or a single Aegis Ashore radar. Fixed, relocatable and mobile radio frequency sensors should be positioned around the island's perimeter, such as compact versions of SPY-6 or Lower Tier Air and Missile Defense Sensor radars and the passive Army Long-Range Persistent Surveillance system. During periods of heightened tension, passive and active radio frequency and electro-optical/infrared sensors could also be deployed on unmanned aircraft and stratospheric balloons to monitor over-the-horizon threats. This mixed architecture would provide better collective coverage and be more difficult to defeat compared to one or two fixed Aegis Ashore deckhouses.

To shoot down enemy missiles and aircraft, the architecture should field mobile, containerized launchers for long-range interceptors like the SM-6 and SM-3 rather than Aegis Ashore's finite and targetable in-ground vertical launch magazines. They should be complemented by medium- to short-range engagement systems to protect high-value targets such as the Patriot, the National Advanced Surface-to-Air Missile System or the Army's planned Indirect Fire Protection Capability, as well as non-kinetic defenses such as high-powered microwave weapons and electronic warfare systems that could damage or confuse the guidance systems on incoming missiles.

Today, destroyers patrol the waters around Guam to provide ballistic missile defense capacity beyond that available with THAAD. A new distributed architecture would place more capacity ashore to free surface combatants from missile defense duty. In a crisis or conflict, the architecture could add capacity with surface action groups and combat air patrols capable of intercepting threats at longer ranges.

Instead of Aegis Ashore's large, single C2 node, a distributed architecture would virtualize the Aegis Combat System to allow multiple facilities or mobile vehicles to serve as miniature air operations centers. The mobility of sensors, effectors and C2 nodes in this architecture would enable the employment of camouflage, concealment and deception, including decoys, to complicate enemy targeting and increase the number of weapons needed to ensure a successful attack.

INDOPACOM's plan for implementing new Guam air defenses should also apply lessons from Japan's aborted Aegis Ashore program, whose accelerated timeline contributed to the selection of the least expensive and technically risky option — two fixed Aegis Ashore systems — and the discounting of alternatives. Adm. Phil Davidson's 2026 goal of improving Guam's defenses faces a similar risk.

Bound by an iron triangle, Guam's air and missile defenses can be good, fast or cheap — but not all three. If 2026 is held as a rigid constraint, the only solution able to meet the schedule and requirements may be the familiar, and ineffective, fixed Aegis Ashore architecture.

Compared to one or two Aegis Ashore sites, a distributed architecture may require slightly more time to develop or funds to field. But a phased approach could introduce new systems as funding becomes available and allow expanding the system's capability to meet the evolving threat. For example, SPY-6 radars, C2 bunkers and composite THAAD-Patriot-NASAMS batteries could be fielded before 2026, quickly followed by the introduction of mobile assets.

Guam and the Northern Marianas are essential to U.S. strategy and operations in the Western Pacific. Their defenses have long been ignored, and Adm. Davidson should be lauded for charting a path forward. A disaggregated architecture, however, will be more likely to realize INDOPACOM's vision of resilient and scalable air and missile defense.

Timothy A. Walton is a fellow at the Hudson Institute's Center for Defense Concepts and Technology, where Bryan Clark is a senior fellow.

https://www.defensenews.com/opinion/commentary/2020/07/30/guams-air-defense-should-learn-lessons-from-japans-aegis-ashore/

Sur le même sujet

  • OMFV: Army Seeks Industry Advice On Bradley Replacement

    27 février 2020 | International, Terrestre

    OMFV: Army Seeks Industry Advice On Bradley Replacement

    Having rebooted the Optionally Manned Fighting Vehicle program, the Army is now is asking industry input on how to achieve nine goals, from survivability to mobility to streamlined logistics. By SYDNEY J. FREEDBERG JR.on February 26, 2020 at 4:01 AM Two months ago, the Army cancelled its original solicitation to replace the M2 Bradley troop carrier after no company could meet the strict requirements. This afternoon, the Army officially asked for industry input on how to achieve nine broadly-defined “characteristics” for the future Optionally Manned Fighting Vehicle. “Feedback may be submitted in any form (concepts, information papers, technical papers, sketches, etc.),” says the announcement on SAM.gov. “The Army would like to obtain this initial feedback prior to 06 March 2020.” This call for suggestions on how to move forward comes just weeks after the Army issued a surprisingly apologetic survey asking industry what they did wrong the first time around. It's part of a newly humble approach in which the Army doesn't prescribe formal requirements up-front but instead lays out broad objectives and asks industry how best to achieve them. The chief of Army Futures Command, Gen. Mike Murray, gave reporters a preview of the nine characteristics three weeks ago, but the list announced today is much more detailed – though still leaving plenty of room for companies to brainstorm solutions. Our annotated highlights from the announcement – the emphasis is in the original: Background: The OMFV, as part of an Armored Brigade Combat Team (ABCT), will replace the Bradley to provide the capabilities required to defeat a future near-peer competitor's force. The Army is seeking a transformational increase in warfighting capability, not simply another incremental improvement over the current Bradley Fighting Vehicle. Concept of employment: As part of an ABCT, the OMFV will not fight alone, but rather as part of a section, platoon, and company of mechanized infantry.... “Near-peer competitor” is Pentagon jargon for “China or Russia” – chiefly Russia in this case, since the plains of Eastern Europe are a far more likely arena for armored warfare than Pacific islands. That the Army wants “transformational” improvements, not “incremental” ones, shows there's still some real ambition in the vision for this vehicle. At the same time, the OMFV will still fight “as part of an ABCT,” meaning the existing Armored Brigade Combat Team organization — not as part of some all-new organization with all-new equipment, as was once envisioned for the cancelled Future Combat Systems. Survivability. The OMFV must protect the crew and Soldiers from emerging threats and CBRN environments. The OMFV should reduce likelihood of detection by minimizing thermal, visual, and acoustic signatures. In other words, the vehicle needs to give the crew a chance of survival against cutting-edge anti-tank missiles, precision-guided artillery, attack drones and other such “emerging threats,” as chemical, biological, radiological, and nuclear contamination (CBRN). That does not mean the vehicle itself has to survive intact. The way this is worded, if a hit totals the OMFV but the soldiers inside can walk away, the Army will count that as a win. (The JLTV 4×4 truck takes this same approach to roadside bombs). So the OMFV doesn't necessarily have to have heavy armor protecting the entire vehicle. It could have a heavily armored crew compartment, light armor elsewhere, and an Active Protection System to intercept incoming threats. (The Russian T-14 Armata uses this combination). It also should avoid being spotted in the first place by eye, ear, or thermal sensor, which might favor designs with hybrid-electric motors that can switch from hot, noisy diesels to a battery-driven stealth mode. Mobility. The OMFV must have mobility that can keep pace with the Abrams in a combined arms fight through rural and urban terrain. That's the M1 Abrams main battle tank, which the existing M2 Bradley and M109 Paladin howitzer were also designed to keep up with. This is another aspect of that “concept of employment” that calls for the OMFV to slot into existing formations and work closely with existing vehicles. Note also the reference to “rural and urban terrain,” which will come up again: Traditionally the Army has avoided city fighting, but as urban sprawl covers ever more of the planet, technology and tactics have to adapt to brutal close-quarters combat. Growth. The OMFV must possess the growth margins and open architecture required for rapid upgrades and insertion of future technologies such as mission command systems, protection systems, and sensors. This characteristic is really where you get the potential for “transformational” improvements. The M2 Bradley was originally introduced in 1980 and, after 40 years of upgrades, it has very little margin left to handle additional weight or – even more important nowadays – power-hungry electronics. The Bradley's lack of room to grow has driven the Army to try replacing it three times already: the original OMFV requirements cancelled this year; the Ground Combat Vehicle cancelled in 2014; and the Future Combat Systems cancelled in 2009. Hopefully, fourth time's the charm. Lethality. The OMFV-equipped platoons must defeat future near-peer soldiers, infantry fighting vehicles, helicopters, small unmanned aerial systems, and tanks as part of a Combined Arms Team in rural and urban terrain. This is a more ambitious hit list than the Bradley, which sports machineguns for killing infantry, a 25 mm autocannon to destroy light armored vehicles, and the obsolescent TOW missile for taking on heavy tanks. The Pentagon is increasingly worried about small drones, which ISIS terrorists have used as flying IEDs and Russian artillery has used as spotters for barrages. With Russia and China developing increasingly sophisticated anti-aircraft systems, there's also a concern that US fighters may not be able to keep enemy attack helicopters at bay, forcing ground forces to handle that threat themselves. These aerial targets require more sophisticated tracking systems, and drones may be best dealt with by electronic jamming or lasers rather than bullets. Weight. The OMFV must traverse 80% of Main Supply Routes (MSRs), national highways, and bridges in pacing threat countries, and reduce the cost of logistics and maintenance. Designs must allow for future growth in components and component weights without overall growth of vehicle weight through modularity and innovation. Weight is the issue that has bedeviled Bradley replacements for two decades. The FCS vehicles, optimized for air transport, were too light to carry adequate armor; GCV was too heavy; and the original OMFV couldn't meet its air transport requirements and its protection requirements at the same time. With most bridges in Eastern Europe unable to safely take weights over 50 tons, too much heavy armor can cripple your mobility. Logistics. The OMFV must reduce the logistical burden on ABCTs and must be equipped with advanced diagnostic and prognostic capabilities. Advanced manufacturing and other innovative techniques should be included in the design that reduce the time and cost of vehicle repairs. There are two big factors that make a vehicle hard to keep supplied and in working order. One is weight – heavier vehicles burn more fuel – and the other is complexity. High-tech is usually high-maintenance. The US military is hopeful that AI-driven predictive maintenance can detect and head off impending breakdowns, and that 3D printing can produce at least some spare parts on demand without a long supply line. Transportability. The OMFV must be worldwide deployable by standard inter- and intra-theater sea, waterway, air, rail, and road modes of transportation. The original OMFV requirement very specifically called for two of the vehicles to fit on a single Air Force C-17 jet transport, which proved undoable with the weight of armor desired. This time, the Army isn't specifying any particular aircraft. In practice, armored vehicles are almost always shipped by sea and, where possible, stockpiled on allied soil well before a crisis erupts. On land, since tracked vehicles aren't designed to drive hundreds of miles by road, they're usually deployed to the battle zone by train or tractor-trailer, both of which have their own weight limits. Manning. The OMFV should operate with the minimal number of crew members required to fight and win. The OMFV should allow commanders to choose between manned or remote operation based on the tactical situation. This is the objective that gave the OMFV its name: Optionally Manned Fighting Vehicle. Now, since it's a Bradley replacement, the OMFV is supposed to be a troop carrier – specifically, the heavily armed and armored kind known as an Infantry Fighting Vehicle – so by definition it needs to carry people. But the Army is intensely interested in having the option to run it by remote control, or maybe even autonomously, to (for example) scout out especially dangerous areas or carry casualties back to an aid post without pulling healthy soldiers out of the fighting line. Training. The OMFV should contain embedded training capabilities that are compatible with the Synthetic Training Environment (STE). STE is the Army's total overhaul of its training simulators, drawing on commercial gaming technology to develop an array of virtual and augmented reality systems using a common database of real-world terrain. Instead of having to use a simulator in a warehouse somewhere, the Army wants troops to be able to run virtual scenarios on the same vehicles they'll actually fight with. All these characteristics are intertwined – and after its past troubles, the Army is acutely aware that maximizing one, such as protection, may compromise another, such as transportability. That's another thing the service wants feedback on, the announcement says: “The Army is interested in industry partners' ability to meet the desired characteristics and what trades” – that is, trade-offs – “may be necessary.” https://breakingdefense.com/2020/02/omfv-army-seeks-industry-advice-on-bradley-replacement

  • Production of one of the F-35′s most anticipated bombs has been on hold for almost a year

    15 juin 2020 | International, Aérospatial

    Production of one of the F-35′s most anticipated bombs has been on hold for almost a year

    By: Valerie Insinna WASHINGTON — Deliveries of a new precision-guided bomb under development by Raytheon for the F-35 and other fighter jets have been at a standstill for about a year as the company struggles to correct a technical problem involving a key component. A fix for the issue, which brought production of the Small Diameter Bomb II to a halt in July 2019, could be approved by the government as soon as July, said Air Force spokesman Capt. Jake Bailey in response to questions by Defense News. However, a June report by the Government Accountability Office pointed out that continued technical issues have already caused a delay in fielding the munition, with Raytheon forced to redesign a key component and retrofit all 598 bombs already delivered to the Air Force and Navy. The Small Diameter Bomb II — also known as the GBU-53 StormBreaker — was designed with a tri-mode seeker that includes a millimeter wave radar, imaging infrared and semi-active laser that allow the weapon to engage targets in all weather conditions and environments where visibility is obscured by dust and debris. The Air Force and Navy plan to integrate SDB II with a range of fighter aircraft including the F-15, F/A-18 Super Hornet and F-35 joint strike fighter, but the munition has been mired in development for more than a decade. This latest stoppage in production was prompted by internal audits by Raytheon, which found that the clips used to hold the bomb's fins in place “suffered vibration fatigue over long flight hours,” Bailey said. The clips serve “as the backup fin storage device” used to keep the fins in place in case other components fail, noted Bailey, who added that there have been no incidents during tests involving the SDB II fins inadvertently deploying. However, the GAO wrote that the premature deployment of the fins, which help guide the bomb in flight, could damage the weapon as well as cause a safety hazard for the aircraft carrying it. “While this problem could affect all aircraft carrying the bomb, officials said the greatest impact is to the F-35, because the bomb is carried in the aircraft's internal weapons bay and could cause serious damage if the fins deploy while the bomb is in the bay,” the GAO stated. Raytheon declined to comment on this story, directing questions to the Air Force. Raytheon plans on mitigating the issue with a newly designed clip that reduces the vibration of the fins, and will completely pay for developing the fix and retrofitting it on the bombs that have already been delivered, the GAO said. The Air Force confirmed that testing of the new device has already been completed and is going through final reviews. But while Raytheon and the Air Force had hoped to restart production in April, travel restrictions caused by the ongoing global COVID-19 pandemic contributed to further delays. The government now hopes to approve the fix in July, after which production will restart and the retrofit process for existing bombs will begin. “The fin clip failure is the sole reason production was partially halted; once final government approval is obtained, ‘all up round' production can resume,” Bailey said, using a phrase that describes a fully assembled weapon. The Air Force estimates that retrofits will be completed by August, as Raytheon's supplier has already begun manufacturing the replacement component, which are easily installed on the outside of the weapon. “Until production resumes, the total Lot 3 deliveries remain at 204 of the 312 assets on contract,” Bailey said. All this puts initial operational capability at least a year later than the service's original timeline, which predicted IOC would occur in September 2019. The Air Force declined to name a current estimate for when IOC would be achieved, but said it would happen after a separate milestone known as the “initial fielding decision,” which involves the approval of the head of Air Combat Command and is set for the third quarter of 2020. The issue with SDB II's fins is just one of several technical problems with which Raytheon is grappling. The program completed operational tests in 2019, but hardware and software changes are needed after 11 failures were reported. Two hardware fixes have already been put in place, and eight failures were related to software problems that will be addressed in future updates, the GAO said. The sole outstanding issue involves an anomaly with SDB II's guidance system. Fixing it could require Raytheon to redesign the component and conduct retrofits on all bombs already delivered, according to GAO. A review board of the problem is in the “final stages of analysis,” Bailey said. The Air Force and Raytheon plan to establish whether a replacement component is necessary no later than June 30. Although the weapon has not even been officially fielded, some components are already becoming obsolete. A Raytheon subcontractor that makes circuit cards used in the guidance system is expected to stop producing those components years sooner than anticipated. As a result, that the Defense Department may have to order all circuit cards needed for the program of record before December, according to the GAO. That timeline has now been extended to January 2022, “which provides ample time for program office action before the new deadline,” Bailey said. Despite the bomb's ongoing problems, Raytheon continues to rake in contracts for the program. In February, the Defense Department awarded a $15 million increase to a previous SDB II contract for additional technical support. In September, the company received a $200 million contract for lifecycle support during the bomb's engineering and manufacturing development phase. According to a Raytheon news release, the Navy recently completed the first guided release of SDB II from a F/A-18E/F Super Hornet. https://www.defensenews.com/air/2020/06/12/production-of-one-of-the-f-35s-most-anticipated-bombs-has-been-on-hold-for-almost-a-year

  • Serbia may become biggest operator of military drones in Balkans

    21 novembre 2022 | International, Aérospatial

    Serbia may become biggest operator of military drones in Balkans

    The first prototype of a weaponized version of the Vrabac drone was displayed in Belgrade this year.

Toutes les nouvelles