22 octobre 2021 | International, Aérospatial

Global Hawk Drones Repurposed for Hypersonic Missile Tests

Northrop Grumman will be repurposing four decommissioned RQ-4 Global Hawk drones into Range Hawk surveillance platforms.

https://www.thedefensepost.com/2021/10/21/global-hawk-hypersonic-missile-tests

Sur le même sujet

  • US Army’s FY22 budget backs modernization, cuts ‘down into bone’ of legacy fleet

    31 mai 2021 | International, Terrestre

    US Army’s FY22 budget backs modernization, cuts ‘down into bone’ of legacy fleet

    The Army takes a hit in the president's fiscal 2022 budget request, but not enough to derail modernization efforts critical to the future fight ... this time.

  • To build stockpiles of weapons, UK looks at two-pronged approach

    9 janvier 2019 | International, Aérospatial

    To build stockpiles of weapons, UK looks at two-pronged approach

    By: Aaron Mehta WASHINGTON — When the U.K. rolled out its Modernising Defence Programme report last month, it highlighted a need to increase stores of weaponry to deal with threats from great powers around the globe. In his speech unveiling the document, Defence Secretary Gavin Williamson specifically stated that to “improve the combat effectiveness of our forces, we will re-prioritize the current defense program to increase weapon stockpiles. And we are accelerating work to assure the resilience of our defense systems and capabilities.” But what does that actually entail? During a Tuesday visit to Washington, Director for Strategic Planning Will Jessett said the U.K. plans to go about increasing weapon stockpiles in two ways. The first is the easy route: throw money at the problem. And a certain amount — the Ministry of Defence employee wouldn't say exactly how much — of the recent budget increase given by Parliament will indeed be going toward increasing stockpiles of armaments. The second part is more difficult, but goes to a throughline for the strategy document: the need to be smarter about how the British military uses its gear. “We've spend a shedload of money on producing the force structure that we have already. We're not necessarily generating and using it as effectively as we might have done,” Jessett said. “The first thing to do is to make sure that we are making the best of the existing capability that we have, and that [includes] making sure that we've got both the weapon stockpiles and the spares to make sure that you can actual[ly] generate the right numbers of aircraft squadrons." “So some of this will be the new money out of the couple of billion but a lot of this is going to be telling the services themselves,” he added. “There isn't a dollar figure, but there are strong incentives now back on the services to say: ‘Guys, you've got to [use] the capabilities that you've got already.' ” Looking at the Pentagon's efforts over the last few years shows that may be easier said than done. Pushing to find new efficiencies inside the U.S. Defense Department is an annual affair, with the latest attempt delayed by the removal of Chief Management Officer Jay Gibson and the fallout from the resignation of Defense Secretary Jim Mattis. And building up missile stockpiles is a logistical challenge for the department right now, with the Pentagon warning last May that producers of vital parts and materials are on the verge of going out of business or beholden to foreign ownership. Jessett acknowledged the Brexit-shaped elephant in the room, noting that the ability of the MoD to invest funding into new defense priorities will be directly impacted by any deal reached between Britain and the rest of Europe, particularly with foreign-made equipment. “Amongst the reasons we started to face this affordability delta in 2017 were because exchange rates did fall, relative to where they were in 2015,” he said. “I think back to this [question] about the terms of the deal. If we get a deal that's OK, I can imagine, personally, exchange rates not just stabilizing but somewhat improving. If not, it is by definition going to add further pressure into this.” But, he added, “that's not what we're planning for at the moment.” https://www.defensenews.com/global/europe/2019/01/08/to-build-stockpiles-of-weapons-uk-looking-at-two-pronged-approach

  • The tiny tech lab that put AI on a spyplane has another secret project

    15 février 2021 | International, Aérospatial

    The tiny tech lab that put AI on a spyplane has another secret project

    By: Valerie Insinna WASHINGTON — It started as a dare. When Will Roper, then the Air Force's top acquisition official, visited Beale Air Force Base in California last fall, he issued a challenge to the U-2 Federal Laboratory, a five-person organization founded in October 2019. The team was established to create advanced technologies for the venerable Lockheed Martin U-2 spyplane, and Roper wanted to push the team further. “He walked into the laboratory and held his finger out and pointed directly at me,” recalled Maj. Ray Tierney, the U-2 pilot who founded and now leads the lab. “He said, ‘Ray, I got a challenge.' We didn't even say hello.” Roper, a string theorist turned reluctant government bureaucrat who was known for his disruptive style and seemingly endless references to science-fiction, wanted the team to update the U-2′s software during a flight. It was a feat the U.S. military had never accomplished, but to Tierney's exasperation, Roper wanted only to know how long it would take for the lab to pull off. The answer, it turns out, was two days and 22 hours. A month later, in mid-November, Roper laid out a second challenge: Create an AI copilot for the U-2, a collection of algorithms that would be able to learn and adapt in a way totally unlike the mindlessness of an autopilot that strictly follows a preplanned route. That task took a month, when an AI entity called Artuμ (pronounced Artoo, as in R2-D2 of Star Wars fame) was given control of the U-2′s sensors and conveyed information about the location of adversary missile launchers to the human pilot during a live training flight on Dec. 15. Now, the U-2 Federal Laboratory is at work again on another undisclosed challenge. Tierney and Roper declined to elaborate on the task in interviews with Defense News. But Roper acknowledged, more broadly, that a future where AI copilots regularly fly with human operators was close at hand. “Artuμ has a really good chance of making it into operations by maybe the summer of this year,” Roper told Defense News before his Jan. 20 departure from the service. “I'm working with the team on how aggressive is the Goldilocks of being aggressive enough? The goal is fairly achievable, but still requires a lot of stress and effort.” In order to ready Artuμ for day-to-day operations, the AI entity will be tested in potentially millions of virtual training missions — including ones where it faces off against itself. The Air Force must also figure out how to certify it so that it can be used outside of a test environment, Roper said. “The first time we fly an AI in a real operation or real world mission — that's the next big flag to plant in the ground,” Roper said. “And my goal before I leave is to provide the path, the technical objectives, the program approach that's necessary to get to that flag and milestone.” Meanwhile, the team has its own less formal, longer-term challenge: How do you prove to a giant organization like the Air Force, one that is full of bureaucracy and thorough reviews, that a small team of five people can quickly create the innovation the service needs? No regulations, no rules During a Dec. 22 interview, Tierney made it clear that he had little interest in discussing what the U-2 Federal Lab is currently working on. What he wanted to promote, he said, was the concept of how federal laboratories could act as innovation pressure chambers for the military — a place where operators, scientists and acquisition personnel would have the freedom to create without being hamstrung by red tape. For those immersed in military technology, focusing on the promise of federal laboratories can seem like a bit of a letdown, if not outright academic, especially when compared to a discussion about the future of artificial intelligence. The U.S. government is rife with organizations — often named after tired Star Wars references that would make even the most enthusiastic fanboy cringe — created in the name of fostering innovation and rapidly developing new technologies. Many of those advances never make it over the “valley of death” between when a technology is first designed and when it is finally mature enough to go into production. Ultimately, that's the problem the U-2 Federal Lab was created to solve. As a federally accredited laboratory, the team is empowered to create a technology, test it directly with users, mature it over time, and graduate it into the normal acquisition process at Milestone B, Tierney said. At that stage, the product is ready to be treated as a program of record going through the engineering and manufacturing development process, which directly precedes full-rate production. “We're basically front loading all the work so that when we hand it to the acquisition system, there's no work left to do,” Tierney said. The lab essentially functions as a “blue ocean,” as an uncontested market that does not normally exist in the acquisition system, he explained. “There's no regulations; there's no rules.” While that might sound similar to organizations the Air Force has started to harness emerging technologies, such as its Kessel Run software development factory, Tierney bristled at the comparison. “We're basically developing on the weapon system, and then working our way back through the lines of production, as opposed to a lot of these organizations like Kessel Run, which is developing it on servers and server environments,” he said. That distinction is critical when it comes to bringing modern software technologies to an aging platform like the U-2, an aircraft that took its first flight in 1955 and is so idiosyncratic that high speed muscle cars are needed to chase the spyplane and provide situational awareness as it lands. Because the team works only with the U-2, they understand the precise limitations of the weapon system, what its decades-old computers are capable of handling, and how to get the most out of the remaining space and power inside the airplane. Besides Tierney, there are only four other members of the U-2 Federal Lab: a National Guardsman with more than a decade of experience working for IBM, and three civilians with PhDs in machine learning, experimental astrophysics and applied mathematics. (The Air Force declined to provide the names of the other employees from the lab.) As the lone member of the team with experience flying the U-2, Tierney provides perspective on how the aircraft is used operationally and what types of technologies rank high on pilots' wish lists. But what most often drives the team are the projects that can make the biggest impact — not just for the U-2, but across the whole Defense Department. Making it work One of those projects was an effort to use Kubernetes, a containerized system that allows users to automate the deployment and management of software applications, onboard a U-2. The technology was originally created by Google and is currently maintained by the Cloud Native Computing Foundation. “Essentially, what it does is it federates or distributes processing between a bunch of different computers. So you can take five computers in your house and basically mush them all together into one more powerful computer,” Tierney said. The idea generated some resistance from other members of the lab, who questioned the usefulness of deploying Kubernetes to the U-2′s simple computing system. “They said, ‘Kubernetes is useless to us. It's a lot of extra processing overhead. We don't have enough containers. We have one processing board, [so] what are you distributing against? You got one computer,'” Tierney said. But a successful demonstration, held in September, proved that it was possible for even a 1950s-era aircraft to run Kubernetes, opening the door for the Defense Department to think about how it could be used to give legacy platforms more computing power. It also paved the way for the laboratory to do something the Air Force had long been aiming to accomplish: update an aircraft's code while it was in flight. “We wanted to show that a team of five in two days could do what the Department of Defense has been unable to do in its history,” Tierney said. “Nobody helped us with this; there was no big company that rolled in. We didn't outsource any work, it was literally and organically done by a team of five. Could you imagine if we grew the lab by a factor of two or three or four, what that would look like?” The lab has also created a government-owned open software architecture for the U-2, a task that took about three months and involved no additional funding. Once completed, the team was able to integrate advanced machine learning algorithms developed by Sandia National Laboratories in less than 30 minutes. “That's my litmus test for open architecture,” Tierney said. “Go to any provider that says I have open architecture, and just ask them two questions. How long is it going to take you to integrate your service? And how much is it going to cost? And if the answer isn't minutes and free, it's not quite as open as what people want.” The U-2 Federal Lab hopes to export the open architecture system to other military aircraft and is already in talks with several Air Force and Navy program offices on potential demonstrations. Could the Air Force create other federal laboratories to create specialized tech for other aircraft? The U-2 lab was designed from the outset to be franchisable, but Tierney acknowledged that much of the success of future organizations will rest in the composition of the team and the level of expertise of its members. “Can it scale? Absolutely. How does it scale is another question,” Tierney said. “Do you have one of these for every weapon system? Do you have just a couple sprinkled throughout the government? Does it proliferate en masse? Those are all questions that I think, largely can be explored.” For now, it's unclear whether the Air Force will adopt this framework more widely. The accomplishments of the U-2 Federal Laboratory have been lauded by Air Force leaders such as Chief of Staff Gen. Charles “CQ” Brown, who in December wrote on Twitter that the group “continue[s] to push the seemingly impossible.” However, it remains to be seen whether the Biden administration will give the lab the champion it found in Roper, and continued pressure on the defense budget — and to retire older aircraft like the U-2 — could present greater adversity for the lab. But as for the other challenge, the one Tierney and Roper didn't want to discuss, Tierney offered only a wink as to what comes next: “What I can say is that the future is going to be an interesting one.” https://www.defensenews.com/air/2021/02/11/the-tiny-tech-lab-that-put-ai-on-a-spyplane-has-another-secret-project/

Toutes les nouvelles