19 juin 2020 | International, Aérospatial

Future Combat Air System: Owning the sky with the Next Generation Weapons System

June 17, 2020 - When facing today's uncertainties, air superiority, which was underpinning western military operations for over 40 years, is no longer a given thing. The playing field is levelled by opponents' constant investment in integrated air defence systems, hypersonic weapon technologies and low observability technologies.

Western air forces need to regain their ability to counter threats by accessing highly contested environments in a scalable, flexible and dynamic way rather than a local and static one.

By intelligently teaming sixth generation manned fighters with unmanned platforms, the Next Generation Weapon System or NGWS will provide European air forces & navies with capabilities well beyond existing fighters. With no agreed definition of a sixth-generation fighter, Airbus' understanding is that such a New Generation Fighter or NGF will be a more sophisticated and connected platform than what currently exists.

The NGF will set the next level of survivability in terms of passive stealth (signature reduction and electromagnetic emission control) and active stealth (electronic counter measures).

The heart of the NGF will be provided by its extremely capable avionics and sensor suite. The increase in processing power, storage and connectivity will grant the pilot with greatly heightened situational awareness and the ability to rely not only on its own sensors and effectors, but also on other platforms' ones. Combined with the introduction of artificial intelligence and the ability to team with unmanned platforms, the NGF will become a battlefield management platform capable of operating deep within the enemy airspace.

Powerful engines equipped with thrust-vectoring nozzles combined with high-performance flight control system will ensure the NGF's manoeuvrability, speed, and range. Innovative effectors will provide the fighter with unprecedented firepower, ranging from stand-off kinetic loads (including hypersonic ones) to directed energy weapons (lasers and microwaves) to electronic warfare capabilities (including cyberattack).

However, more sophistication also means higher development costs leading to a declining number of platforms and/or effectors. Eventually such dangerously low levels result in critical availability levels. This is problematic, as operational studies indicate that penetrating contested environments will require an adequate number of manned platforms. Hence, it is important to set the right level of capabilities for the NGF by taking a holistic approach when right sizing its stealth, velocity, manoeuvrability, range, sensing and effects generation's capabilities.

The NGF alone will not suffice for the most demanding missions in highly contested environments. To counter such threats, the NGF will team with unmanned platforms called Remote Carriers or RCs acting as force multipliers. Adding capabilities in a scalable and flexible manner will enhance the overall mission effectiveness, efficiency and survivability of the NGWS.

RCs will be a family of unmanned platforms ranging from 200 kilograms for disposable RCs, to under 2 tons for recoverable ones and even several tons in the case of loyal wingmen. Airbus is currently studying and optimising with users their design. The RCs will provide various non-kinetic effects (Target Acquisition and Reconnaissance, Airborne Electronic Warfare) as well as kinetic ones (A2G SEAD/DEAD and Strike).

With “packs” of RCs teaming with NGFs, the NGWS will clearly establish a new operational dimension. An augmented level of effectiveness will be achieved by opening new fields of tactics based on collaborative combat, the use of deception and numeric superiority. Efficiency will improve by ensuring the required mix of capabilities for a given mission is deployed. The NGF will stay at a safe stand-off distance whilst closer RCs deal with the threats, thus keeping the pilots out of harm's way and increasing the manned platform's survivability.

Within the NGWS, the Air Combat Cloud or ACC will connect the manned and unmanned platform and provide the teaming intelligence for faster collaborative combat. The ACC will deliver common situational awareness by instantaneously capturing, sharing, merging and processing massive amounts of data from all connected NGFs and RCs. The ACC's warfare analytics and real-time coordination will provide better situational awareness, tactical options, decisions and collaborative effects

Airbus has a leading role within the Next Generation Weapon System programme programme which will be the core of FCAS. Airbus is Dassault's main partner for the NGF and the lead for the RCs and the ACC with MBDA and Thales as its respective main partners. This will benefit Airbus' sites in securing work and maintaining technological excellence for decades to come.

More on FCAS here

View source version on Airbus: https://www.airbus.com/newsroom/stories/Future-Combat-Air-System-Owning-the-sky-with-the-Next-Generation-Weapons-System.html

Sur le même sujet

  • The military is scrambling to understand the aviation crash risk from a new 5G sale

    21 décembre 2020 | International, Aérospatial, C4ISR

    The military is scrambling to understand the aviation crash risk from a new 5G sale

    By: Valerie Insinna and Aaron Mehta WASHINGTON — As part of a broader move to boost the 5G industry in the United States, the Federal Communications Commission on Dec. 8 began auctioning a portion of C-band electromagnetic spectrum, a move the committee's chairman, Ajit Pai, celebrated as “a big day for American consumers and U.S. leadership in 5G.” But, in the weeks leading up to the auction, more than a dozen commercial aviation groups warned the sale could, as one study put it, lead to “catastrophic failures” with the potential for “multiple fatalities.” At the core of the concerns are radar altimeters, a critical piece of aviation technology used by military, commercial and civil aircraft of all types — including helicopters and unmanned aerial systems — to measure the distance between an aircraft and the ground. The aviation groups worry that 5G operations on the spectrum sold by the FCC could cause interference that would provide inaccurate readings on altimeters or cause their failure outright, in essence leaving pilots unaware of how far they are from the ground and potentially leading to crashes over the United States. According to a memo obtained by Defense News, those concerns are shared by the head of the Federal Aviation Administration and the number two at the Department of Transportation, who are calling on the FCC to pause the sale so the safety issue can be studied more closely. The FCC, in turn, has said its own technical studies show little to no risk involved and it intends to continue moving forward. Now, with the auction underway, the Defense Department is scrambling to catch up. The Pentagon has yet to determine the effect on military aircraft and has not established a formal position on the sale, with officials rushing behind the scenes to set up meetings and understand the potential long-term impacts. A Pentagon official, in response to questions from Defense News, would only say the department's policy board on federal aviation and aviation cyber initiative task force — an interagency organization led by the FAA — are reviewing reports by industry groups about the risk of 5G interference. Senior leaders from the Defense Department, Department of Homeland Security, and the aviation cyber initiative plan to meet Dec. 21 “to discuss findings and to establish an interagency way ahead to validate and respond to these reports,” the official stated. Among those expected to attend are Brig. Gen. Robert Barrie Jr., the official who manages Army aviation assets; Brig. Gen. Eric DeLange, director of the Air Force cyberspace operations and warfighter communications office; and several cyber experts from the FAA and DHS. Perhaps most notably, Honeywell Industries, a key producer of radar altimeters, has also been invited to discuss possible alternatives to current systems — a sign that the defense industry is taking the issue seriously. Honeywell declined to comment. If the spectrum sale continues, some experts are warning a best case scenario may be that the department has to spend millions of dollars and thousands of man hours to design, procure and install new radar altimeters across the military's fleet of airborne systems. The worst case? As one senior government official with experience in aviation said, “There will be accidents, property's going to be destroyed and people are going to die.” The ongoing dispute Under the Trump administration, the FCC has focused on the sale of spectrum in order to goose the nascent 5G industry, which administration officials see as a driver for American economic growth. Branded as the 5G FAST Plan, the commission has moved quickly to sell C-band spectrum. This particular auction involves spectrum in the 3.7–3.98 GHz frequency, with the hope of selling more than 5,000 new flexible-use overlay licenses. Satellite operators using the C-Band have agreed to repack their operations out of the band's lower 300 megahertz (3.7-4.0 GHz) into the upper 200 megahertz (4.0-4.2 GHz), in two stages. They expect to complete the move in December 2023. As of Dec. 17, more than 50 bidders had reportedly put forth over $15 billion in offers for the spectrum rights. Currently, the 3.7–3.98 GHz frequency portion of the C-Band is relatively quiet, occupied predominantly by low-powered satellites. For decades, this made the neighboring 4.2-4.4 GHz frequency a perfect place for the operation of radar altimeters, which are also called radio altimeters. But that frequency may not stay quiet for long. Once 5G telecommunications are introduced in the 3.7-3.98 portion of the band, there is a “major risk” that those systems will create “harmful interference” to radar altimeters, according to an October study from the RTCA, a trade organization that works with the FAA to develop safety standards. “The results of the study performed clearly indicate that this risk is widespread and has the potential for broad impacts to aviation operations in the United States, including the possibility of catastrophic failures leading to multiple fatalities, in the absence of appropriate mitigations,” the RTCA stated in its report. Research for the report was conducted by the Aerospace Vehicle Systems Institute, a cooperative research organization based out of Texas A&M University. Radio altimeters are critical during landings, once an aircraft moves below 2,500 feet from the ground. At that point, no other instruments provide an accurate measurement of a plane's distance from the ground. “It's so important to have an accurate reading, because if it's a bad reading it could lead to the airplane doing something you don't want it to do.” explained Terry McVenes, the RTCA president and chief executive. McVenes is a former Boeing safety executive with 30 years' experience in the commercial aviation industry. “If your airplane thought it was 1,000 feet above the ground but was only 50 feet above the ground, well... you could have a problem,” he said. The trade group filed the report with the FCC in early October, and shortly afterward met with an FCC engineering team. But since then, “We've heard nothing back from the FCC, had no other direct interactions with them” outside the official filling process, he said. The release of the study triggered a last-minute request by 12 trade groups, including the Aerospace Industries Association, which represents military aviation companies, to consider mitigation efforts based on the report. The groups called the findings “the most comprehensive analysis and assessment to date on this subject, based on the best assumptions, parameters, and data... It has been peer reviewed for accuracy and validity and should not be dismissed by the Commission.” The report has also gained the attention of Steven Bradbury, the acting deputy secretary for transportation, and Steve Dickson, the FAA administrator, who in a Dec. 1 letter obtained by Defense News warned that the spectrum sale could specifically damage both the Terrain Awareness Warning System, a major safety function for aircraft, and Autoland features relied on for pilots when landing a plane. “Given the scope of the safety risk, and based upon our current knowledge, it is unclear what measures will be necessary to ensure safe operations in the [National Aerospace System], or how long it will take to implement such measures,” the two leaders wrote. “Depending upon the results of further analysis, it may be appropriate to place restrictions on certain types of operations, which would reduce access to core airports in the U.S. and, thus, reduce the capacity and efficiency” of commercial aviation. That letter, sent to the National Telecommunications and Information Administration, or NTIA, was requested to be added to the FCC's public docket. However, the letter has not been posted to the FCC's public docket as of press time. The FCC and supporters of expanding 5G argue that the concerns are overblown. “In the C-Band Order, the Commission concluded that our rules would protect radio altimeters used by aircraft, and we continue to have no reason to believe that 5G operations in the C-Band will cause harmful interference to radio altimeters,” Will Wiquist, a spokesman for the FCC, said in a statement. “Among other things, these altimeters operate with more than 200 megahertz of separation from the C-band spectrum to be auctioned, more protection than is afforded in some other countries. “Moreover, the RTCA report was prepared outside of the joint aviation/wireless industry group that was set up at the Commission's request and is not a consensus position of that group. Indeed, at least one other member of that multi-stakeholder group has expressed significant concerns with the study and several of its assumptions, and the Commission's experts have concerns with this study as well.” The member group that expressed concerns about the study is the wireless trade association CTIA, which in December filled with the FCC a document that called the findings “lacking and unreliable” and “unsound and unsupported.” Among the specific concerns raised by CTIA were that altimeter requirements used in the report were overly stringent, that it did not break down results by altimeter brand and model, and that the report relied on “unrealistic” scenarios during testing. McVenes said RTCA is open to conducting the research again if presented with new data to work with, but has yet to see that information from CTIA or the FCC. Risks to military aviation Although the RTCA study looked exclusively at civil and commercial aircraft, almost all military aircraft are equipped with radar altimeters that are very similar to their commercial counterparts, said the senior government official. Defense News granted anonymity for this official to speak candidly about the risks to pilot safety. While radar altimeters made for military aircraft are sometimes built to slightly more stringent requirements — having the ability to function in extremely cold or hot environments, for instance, or to withstand higher gravitational forces — they still reside on the same portion of the spectrum as commercial ones and are vulnerable to the same interference, the senior government official said. The cargo planes and aerial refueling tankers operated by the Air Force's Air Mobility Command would be most hindered by the interference produced by 5G due to their similarities to commercial aircraft, said Mike Holmes, a retired Air Force four-star general and former head of Air Combat Command. Holmes reviewed the RTCA report at Defense News' request. Many of the Air Force's mobility assets are either based on commercial passenger jets, such as the Boeing 767-derived KC-46 tanker, or are equipped with commercial off-the-shelf avionics. As such, certain mobility aircraft are approved to conduct landings in bad weather conditions when the pilot has to rely on the aircraft's instruments — such as the radar altimeter — instead of visual cues. “You wouldn't be able to fly that approach if your radar altimeter was being interfered with and you couldn't get a good signal,” Holmes said. “For the military...you'd probably divert someplace else.” For tactical aircraft, the bigger concern would be low-level flights over terrain such as mountains. Fighter pilots use their radar altimeters when flying close to the ground to evade enemy radar or surface-to-air threats. However, Holmes noted that not all fighter jets — such as the 1970s era F-15C — have radar altimeters, and that pilots would still be able to rely on visual cues. Still, he said, if a radar altimeter is offering faulty information due to interference, that could lull pilots into a false sense of security about how far they are from the ground. “Part of [the problem] is going to be trying to know whether you're getting interference or not,” he said. The senior government official noted that the special operations community could be particularly hurt by 5G interference. Certain aircrews of platforms, such as the C-130 or C-17, receive specific training to fly special operations low level missions, which involve flying close to the ground and inserting or extracting special operators, and those training missions may become more difficult to execute if 5G interference is a problem. This training “is often executed under the cover of darkness. Depth and obstacle perception can be hindered in darkness due to the human eye's cell structure,” the official said. “Night vision goggles provide compensation but still limit the pilot's situational awareness.” If the sales go through, the military will likely have to modify or replace its altimeters to meet whatever new safety standards the FAA eventually approves to mitigate the risks of 5G interference, Holmes said. “If you go ahead and give up this part of the spectrum, the interference will drive changes that have to be made either to modify the equipment that is being used for 5G, to modify the equipment that are on airplanes, or to modify the procedures that determine how you use that equipment,” Holmes said. Replacing or modifying altimeters will take time and funding — two commodities defense experts predict will be in short supply over the coming years — as defense budgets flatten. In the near term, Holmes projects the services will change their training practices to eliminate any added risk to pilots caused by altimeter interference, such as restricting pilots of certain aircraft from landing in bad weather or ensuring that pilots of fighter aircraft take off with enough fuel so that they can divert to another airport if their radar altimeter no longer works. In short, the military will have to give up money, time and effectiveness to fix the problem. “The outcome would be lack of efficiency. You wouldn't fly [certain] approaches in bad weather. So there would be times you couldn't go do what you were [planning on] doing, whether that's moving passengers or cargo in the civilian world or whether that was passengers or cargo in the military,” Holmes said. “But ultimately, I would think the impact is going to be greater on the commercial airline world than it was on the military world.” A billion dollar problem While the satellite operators who currently operate within 3.7-3.98 GHz will receive some proceeds of the sale, allowing them to move to another portion of the spectrum, no funding is set to be given to the civil, commercial and government entities that rely on radar altimeters for safe aerospace operations. As a result, it is likely that the U.S. military will have to replace “many or most” of the radar altimeters currently onboard its airplanes, helicopters and drones, the senior government official said. And because radar altimeters have all been developed to operate on the same portion of the spectrum, there is no off-the-shelf replacement already on the market for which interference wouldn't be a concern. On the commercial side, McVenes said if industry has to replace altimeters across its fleet, a price tag of “several billion dollars is probably on the low estimate.” That price tag could well jump for the military side, given the complexity of work on military systems - it is easier to swap out a part on a commercial plane than a stealth-coated fighter - and the infamous prices of defense procurement. Meanwhile, the Defense Department could need to invest hundreds of millions of dollars into the engineering work necessary to develop new altimeters, procuring those systems, testing and recertifying each platform for normal operations, and finally, installing the new hardware on potentially hundreds or thousands of aircraft across the military's inventory. “It will take many years, if not decades,” the senior government official said. In the two months since the report was released, industry has jockeyed to get more time to study the issue and to put measures in place to mitigate the risks. In a Nov. 17 letter to the chairmen and ranking members of the Senate Committee on Commerce, Science, and Transportation and the House Committee on Transportation and Infrastructure, the Aerospace Industries Association and 13 other aerospace trade groups implored members of Congress to take action to protect the frequency bands used by radar altimeters. “We are concerned that without this congressional intervention to understand potential implications and ramifications, decisions will be made with a frightening lack of understanding of aviation requirements,” the groups stated. Help from Congress seemingly came Dec. 7, when Rep. Peter DeFazio, the Oregon Democrat who leads the House committee, sent a letter to FCC Chairman Pai calling for the commission to postpone the sale. “These RTCA findings are alarming; they not only align with earlier research identifying harmful effects of 5G networks to radio altimeters, but they reflect a clear need for the FCC to return to the drawing board with this premature plan,” he wrote. “There is no question that additional study is needed to understand the full extent and severity of 5G interference with radio altimeters and whether any mitigations are feasible — or even possible — to ensure flight safety. “We must never take a chance with aviation safety — and at no point should commercial interests be placed above it.” A day later, the FCC pressed forward with the auction. https://www.defensenews.com/2020/12/21/the-military-is-scrambling-to-understand-the-aviation-crash-risk-from-a-new-5g-sale

  • Pour l'EuroDrone, Airbus choisit le turbopropulseur proposé par la filiale italienne de General Electric - Zone Militaire

    30 mars 2022 | International, Aérospatial

    Pour l'EuroDrone, Airbus choisit le turbopropulseur proposé par la filiale italienne de General Electric - Zone Militaire

    Après des mois de palabres au sujet des spécifications et des coûts, l'Organisation Conjointe de Coopération en matière d’Armement a enfin notifié le

  • Lockheed CEO: Boeing’s F-15X won’t disrupt F-35 program

    30 janvier 2019 | International, Aérospatial

    Lockheed CEO: Boeing’s F-15X won’t disrupt F-35 program

    By: Valerie Insinna WASHINGTON — Lockheed Martin has been given assurances by top Pentagon leaders that the F-35 program will not be negatively impacted by a potential U.S. Air Force buy of Boeing's F-15X, Lockheed CEO Marillyn Hewson said Tuesday. “If they choose to have an order of the F-15, it won't be at the expense of F-35 quantities,” she told investors during an earnings call. “I'm hearing that directly from leadership in the Pentagon, and I think that's an important point for me to make. It's not just our suspicion, but I've been told that directly.” The U.S. Air Force is expected to roll out a plan to begin buying new F-15s in its upcoming fiscal 2020 budget release. In December, Bloomberg reported the service intends to purchase 12 new F-15X aircraft in 2020 for $1.2 billion. On Friday, Gen. Dave Goldfein, the Air Force's chief of staff, confirmed to Defense News that the service will procure new F-15s if the budget grows enough to allow it, but that the F-35 program of record would remain the same with no slowdown to the buy rate. “I'm not backing an inch off of the F-35” Goldfein said. “The F-35 buy that we're on continues to remain on track. And I'm not interested in taking a nickel out of it when it comes to buying anything else in the fighter portfolio.” Goldfein added that the Air Force wants to increase fighter procurement to 72 aircraft a year. The Air Force has about 230 F-15 "C" and "D" models currently in service, and the F-15X will replace the portion of the fleet owned by the Air National Guard, according to Bloomberg. The new F-15 model will have new radar and electronic warfare equipment, the ability to carry more weapons, and include other improvements originally designed for Saudi Arabia's and Qatar's F-15s. If the service maintained a rate of one F-15X a month, it would be free to boost its F-35 production rate to 60 aircraft a year — a number that Air Force officials had cited as key for production ramp up. However, the FY19 budget forecast showed that the service would likely be unable to procure the F-35 in those quantities before FY23. “If we had the money, those would be 72 F-35s. But we've gotta look at this from a cost/business case.” Goldfein said. “An F-15 will never be an F-35. Never. But I need capacity.” Hewson's statement indicates that support for the F-35 continues to be strong both within the Air Force and among Pentagon leaders. However, earlier on Tuesday, acting Defense Secretary Patrick Shanahan told reporters he wants to see “more performance” from the F-35, although he did not specify particular areas of improvement. “I am biased towards giving the taxpayer their moneys' worth. And the F-35, unequivocally, I can say has a lot of opportunity for more performance,” said Shanahan, a former Boeing executive. When investors asked Hewson to respond to Shanahan's critique, the Lockheed CEO said the company remains on the same page with the Pentagon on the need to reduce the cost per plane. “We're on a path to drive it to an $80 million [unit cost] for the F-35A by full-rate production,” which is projected to begin in Lot 15 with deliveries starting in 2023, Hewson said. “So as long as we stay on our procurement rate plan — which by all accounts we're going to continue to ramp up at the rate that we envisioned — then we're going to continue to drive the price down." Aaron Mehta in Washington contributed to this story. https://www.defensenews.com/industry/2019/01/29/lockheed-ceo-boeings-f-15x-wont-disrupt-f-35-program

Toutes les nouvelles