3 février 2021 | International, Aérospatial

‘Drone swarms’ are coming, and they are the future of wars in the air

The question really is not if, but when and where drone swarms, which is the next evolution of robotic warfare, will be utilised in real-time operations.

In early January 2018, Russian operators manning the extensive air defence network at Russia's Khmeimim airbase in western Syria spotted 13 incoming drones at low level. As the Russian air defence operators engaged these drones with EW & SHORAD systems, it was clear to the Russians that they were witnessing a new genre of a collaborative drone attack.

The Russians shot down seven drones and jammed the remaining six in the nick of time. While the Islamic State and Afghan Taliban have used drones to deliver ad hoc explosive payloads, the failed attack on Khmeimim that evening was disturbing to close observers of drone warfare as the first recorded instance of a mass-drone attack by non-state actors in a combat operation. More drone attacks happened on the Russian facilities in Syria all through 2018, 2019 and 2020, with over 150 drones disabled by Russian AD in Syria till date.

On 14 September 2019, 25 massed drones in two waves attacked the state-owned Saudi Aramco oil processing facilities at Abqaiq and Khurais. Analysis of satellite images of the Abqaiq facility before and after the attacks showed 19 individual strikes. What was noteworthy was that the Saudi air defence, including the potent MIM-104 Patriot and Crotale NGs failed to stop these waves of drones and cruise missiles. This demonstrates how a group of drones and cruise missiles coming from multiple directions can escape undetected for long and overwhelm conventional air defences.

Switch to the unmanned

While the US and Israel have extensively used drones in varied operational roles over the years, a glimpse of how warfare would evolve in future with use of unmanned air vehicles was truly highlighted by Turkey in Syria and Libya, and by Azerbaijan against Armenia in the Nagorno-Karabakh war in 2020. The coordinated usage of armed drones and loitering munition against tanks and air defence systems via electronic networks was very effective.

This was especially showcased in the Azerbaijani strikes to knock down Armenian S-300 and SHORAD networks, as well as 200 plus military vehicles in the tactical battlefield area (TBA). This engagement is an order of magnitude higher from similar Russian use of unmanned aerial vehicles (UAVs) in Ukraine from 2014 onwards, where networked UAVs working with Russian ground based offensive weapons systems were able to eliminate major Ukrainian Army columns and supply depots.

With the world taking note of these milestone events where smaller nations are exhibiting advanced warfighting capabilities, the military drone use will expand rapidly, dominated by rampant induction of surveillance and attack UAVs across the globe. Here Israel, Turkey, Russia and China are providing an effective and alternate industrial base to challenge the domination of the west in proliferation of advanced drones and allied technologies.

However, the drone assaults on Khmeimim AFB and Saudi oil facilities, as well as coordinated use of drones in Ukraine, Syria, Libya and Nagorno-Karabakh display early flashes of evolution in future aerial warfare towards the concept of what is known as ‘drone swarming'. In particular, the mass drone attacks on Russian forces in Syria has highlighted the rampant danger that unmanned aircraft in a group increasingly pose, even in the hands of non-state actors. Such small drone teams, collaborating together, offer a game-changing capability for not only larger nations like the United States, Russia, China and Russia, but also small nations and non-state players, who will use the drone swarms in a highly asymmetric role. Very significantly, low cost unsophisticated drones working together and aiming for target saturation through numbers, impose a high cost penalty on the air defence elements.

While defences may be able to fend off a handful of these improvised drones executing a very loosely coordinated attack, a near peer-state competitor can field a much advanced, denser, more nimble, adaptable, and networked force.

Demystifying drone swarming

So what exactly is a drone swarm? Swarm robotics is an approach to the coordination of multiple autonomous robots as a system which consists of a large number of mostly physical robots, controlled by minimal human intervention. These exhibit collective self organising (SO) behaviour through interaction and cohesion between robots, as well as interaction of robots with the environment.

Swarming algorithms are empowered by biological studies of swarm behaviour of insects, fishes, birds and animals. Swarming R&D across the world is focussed on development of distributed artificial swarm intelligence capability, commodification of technology for lesser cost impact and increasing state of autonomy between the agents in a swarm.

While massed drones in spectacular light shows are all controlled centrally, in a true swarm, each of the drones flies itself following onboard AI to maintain formation and avoid collisions with algorithms mimicking nature — there is no true leader and follower, with all agents in a swarm having their own ‘mind' able to undertake collective decision-making, adaptive formation flying, and self-healing. The benefit of such a swarm is that if one drone drops out — and a few appear to crash — the group can rearrange itself to continue undertaking the mission till the last UAV in air.

Over time as militaries have incorporated greater communications, training, and organisation — they were able to fight in an increasingly sophisticated manner, leveraging more advanced doctrinal forms, with each evolution superior to the previous. Today militaries predominantly conduct manoeuvre warfare. Here swarming would be the next evolution in warfare — with the swarms exhibiting the decentralised nature of melee combat, along with the mobility of manoeuvre warfare. They have varied levels of autonomy and artificial intelligence. The autonomy extends military reach into the well defended battlespace, operating with greater range and persistence than manned systems; while artificial intelligence ensures dangerous and suicidal missions, thus allowing more daring concepts of operation (CONOPs). Both provide greater success in face on increased threat levels and rapid penetration of contested airspace.

This switch to the unmanned is happening all across the world. And the most preferred route for delivery of a kinetic and non-kinetic payloads is via air. Traditionally, in airpower-heavy militaries like the United States, air operations have relied on increasingly capable multi-function manned aircraft to execute critical combat and non-combat missions over the decades. However, adversarial abilities to detect and engage these aircraft from longer ranges having improved are driving up the costs for vehicle design, operations and replacements. Thus an ability to send large numbers of small unmanned air systems (UASs) with coordinated and distributed capabilities, could provide militaries across the world with improved operational footprints at a much lower cost. These, embedded with manned elements, will effectively saturate adversary targets as a ‘system of systems'. Here Manned & Unmanned Teaming (MUM-T) acts as a force multiplier with autonomy and collaboration and the warfighter's role transforming to — commanding, rather than controlling a swarm. Once unleashed an armed, fully autonomous drone swarms (AFADS) with distributed AI will locate, identify, and attack targets without human intervention.

While new technologies, and in particular AI and edge computing, will drive drone swarms — the key element is still going to be the swarming software. Towards this, all collective behaviour can ideally be clubbed under the term ‘swarm'. However, collaborative autonomy has ‘three' transformational echelons of behaviour — flocking, where a discernible number of UAVs execute abstract commands autonomously, but fall short of true swarm behaviour. UAVs attacking the Russians AFB in Syria and the Saudi oilfields utilised this echelon. Swarming, where a large numbers of UAVs aggregate entirely through swarming algorithms in real time and is the highest state of collaborative autonomy. Loyal Wingman utilise the collaborative autonomy either through emergent flocking or core swarming behaviour. These platforms will operate in MUM-T mode, flying at high speeds alongside fighter jets and carrying missiles, ISR and EW payloads. The Loyal Wingman will be expected to target ground installations and shoot down enemy aircraft, as well as survive against SAMs and electronic attacks in contested airspace.

Military swarming in the US

The United States is the world leader in swarm technology and has underway a host of swarming UAV and munition initiatives. It demonstrated the Perdix swarm in 2017. A trio of F/A-18 Super Hornet fighters release a total of 103 Perdix drones in air.

The drones formed up at a preselected point and then headed out to perform four different missions. Three of the missions involved hovering over a target while the fourth mission involved forming a 100-meter-wide circle in the sky. The demo showed Perdix's collective distributed intelligence, adaptive formation flying, and self-healing abilities.

There are a many uses for such a drone swarm. The drones could be released by fighters to provide reconnaissance for troops on the ground, hunting enemy forces and reporting their location. They could also jam enemy communications, form a wide-area flying communications network, or provide persistent surveillance of a particular area. They could be loaded with small explosive charges and attack individual enemy soldiers. In air-to-air combat, they could spoof enemy radars on aircraft, ground vehicles, and missiles by pretending to be much larger targets.

The US Defense Advanced Research Projects Agency (DARPA) has also showcased the X-61A Gremlin air launched drones. The idea behind DARPA's Gremlins program is to turn cargo aircraft like the C-130 into motherships capable of launching and retrieving swarms of small drones. This would open up a world of possibilities to the military, allowing deployment of swarms of small, inexpensive, reusable drones with different sensors and payloads from legacy aircraft.

The US Navy and Marine Corps' Low-Cost UAV Swarming Technology (LOCUST) program, which fires small UAVs from a tube-based launcher to conduct varied class of missions, is another swarm development underway.

The US Army is also working on drone swarms and Reinforcement Learning (RL)-based AI algorithms for use in tactical battlefield area in multi-domain battle scenario, where swarms will be dynamically coupled and coordinated with heterogeneous mobile platforms to overmatch enemy capabilities.

The US is also experimenting with collaborative smart munition delivery using the Cluster UAS Smart Munition for Missile Deployment where the payload can be launched and deployed from a GMLRS or ATACMS platform. The payload consists of multiple deployable smart UAVs capable of delivering small explosively formed penetrators (EFP) to designated targets. The USAF's Golden Horde — part of the Vanguard initiative to develop next generation offensive technologies — will network munitions like Small Diameter Bombs (SDB) together to operate cooperatively after being launched according to a set of predetermined rules and thus increase effectiveness.

Further, the USAF's ‘Skyborg' initiative aims to design and deploy an artificially intelligent fleet of loyal wingman unmanned combat air vehicles (UCAV). The Kratos XQ-58A, the Sierra 5GAT and Boeing's ATS are undergoing development trials as part of Skyborg.

Military swarming across the world

On the other hand, the UK may have the world's first operational swarm drone unit by the middle of 2021 to perform tasks including suicide missions inside enemy lines and overwhelming adversary air defences. The Royal Air Force's №216 squadron has been tasked to test and deploy future drone swarm capability. The UK has also announced the Project Mosquito, which is a part of the RAF's Lightweight Affordable Novel Combat Aircraft (LANCA) unmanned loyal wingman program. This aims to fly a networked unmanned wingman by 2023.

UK has also tested an autonomous swarm of drones each carrying a variant of Leonardo's BriteCloud expendable active decoy as an electronic warfare payload. Using the BriteClouds, which contain electronic warfare jammers, the drones were able to launch a mock non-kinetic attack on radars acting as surrogates for a notional enemy integrated air defence network

Airbus in France has demonstrated for the first time collaborative remote carrier (RC) swarms and wingman technology towards the Future Combat Air System (FCAS)/Systeme de Combat Arien du Futur (SCAF) program.

The Russians have had an extensive experience operating collaborative drones and countering the same in Ukraine and Syria. The last decade has upscaled UAV efforts in Russia and it aims to induct a large component of robotic vehicles in its military by 2025. It has an initiative called the ‘Flock 93' which aims to operationalise a high density swam in coordinated saturation strike missions. Originally proposed by the Zhukovsky Air Force Academy and private industry, the concept involves simultaneously launching more than a 100 drones, each armed with a 5.5 pound warhead.

The Russians have also tested the S-70 Okhotnik UCAV in loyal wingman roles with its fighter jet fleet to penetrate adversary airspace. A lighter loyal wingman project with the designation Grom has also been unveiled by Russia in 2020. The Russians are aware of the lead in swarm autonomy which the US and China have, and are engaged in R&D and product development initiatives to close the gap in these niche areas in the coming decade.

The Chinese are the closest in matching the high density drone swarm capability of the United States and in many ways are replicating the US R&D initiatives with development of AI empowered autonomous drone swarms. Recently The China Academy of Electronics and Information Technology (CAEIT) tested a 48 x tube launched drone swarm of CH-901 UAVs. CAEIT in the past has demonstrated a 200 unit drone military swarm in 2017. Chinese companies have also demonstrated impressive swarms of 1,000 plus drones using quad-copter-type drones for large public displays, which however are ground controlled and do not have distributed intelligence.

The Chinese are undertaking integration of their existing UAV fleet in a robust collaborative autonomy role with the military. It also has a loyal wingman AVIC 601-S ‘Anjian' under development, which will operate with the fourth and fifth generation PLAAF fighters platforms. Whatever the goals and state of China's drone swarms developments are, its capability and potential threats are definitely real and rapidly evolving at a fast rate.

Other nations developing swarm technology are Israel, where details on such initiatives are closely guarded. However, given the nature of Israeli operational UAV usage over the years, there are reasons to believe that it matured and has been deployed on its fleet of UAVs and loiter munitions, some of which have been proven by disabling Syrian AD networks.

Interestingly, IAI offers a smartphone-based swarming command and control application for worldwide sales. Turkey, which has proven mature MALE UAV capabilities in Syria and Libya through locally made platforms like the TB-2, also has various swarm drone initiatives. Primary amongst them is the Kargu quadcopter which can be employed in kinetic attack roles in the tactical battlefield area. Turkey is vying to be a global UAV power in the days to come. However, the recent US sanctions on its defence industry is likely to curtail high technology induction from the West.

Iran is another middle eastern nation which has used drones in groups operationally. Iran has embraced unmanned aerial vehicles (UAVs) as a major pillar of its military strategy. Iranian authorities use drones for two main purposes — surveillance and attack, where Iran has the ability to conduct missions over the horizon and in most weather conditions. These include drones with the ability to drop bombs or launch missiles and return to base and ‘kamikaze' drones that seek targets of opportunity.

Iranian authorities have had more success with the latter as was visible in the Saudi oilfield strikes in 2019, where Iranian made drones and cruise missiles were used. While baseline collaborative autonomy in terms of vehicle flocking may be available, both Iran and Turkey have not shown true distributed intelligence ability amongst their UAV swarms. But their efforts are a clear indication of how the technology is maturing and proliferating.

India's swarm drone odyssey

In India, the Indian Air Force has been pioneering swarm drone research and development with its Meher Baba initiative since 2019. This is geared towards in depth humanitarian assistance and disaster relief (HADR) operations.

On the other edge of the spectrum, the Indian Army showed off a mature offensive capability with a swarm of 75 autonomous drones with distributed intelligence and edge computing, destroying a variety of simulated targets with kamikaze attacks during India's Army Day parade in New Delhi in January 2021. In the demo, scout drones investigated the targets, then attack and mothership drones released payloads and explosive-laden kamikaze drones, which carried out the attacks. Western commentators noted several significant features of the Indian Army demonstration comparing it to the United States effort around drones, which often emphasises a large homogenous swarm. It was pointed out that India's original work, which showcased a heterogenous swarm effort for the first time in the world in public — as the probable way forward in this domain. An Indian Start-up company NewSpace Research & Technologies is associated with the Indian Army on its swarm development program.

The Hindustan Aeronautics Limited (HAL) in India has unveiled the Air Launched Flexible Asset (ALFA -S) air launched swarming drone system as part of it next generation Combat Air Teaming System (CATS). This is a unique program which utilises a network of air launched remote carriers and swarming units to penetrate contested airspace. The USAF's Air Force Research Labs is collaborating on aspects of the ALFA-S with India. NewSpace Research & Technologies Pvt Ltd is also a partner in the HAL's ALFA initiative.

Another component of HAL's CATS program is the Warrior loyal wingman asset. This is geared for air defence and offensive strike missions and will be employed in a MUM-T role with India's Tejas LCA and the upcoming AMCA fifth generation combat aircraft. What is noteworthy is that India is well driven by the power of indigenous research and the government's ‘Make in India' push to embrace disruptive technologies, which in some areas is at par with similar efforts happening across the world. HAL has unveiled the first 1:1 mock up of the Warrior in AeroIndia 2021 at Bengaluru.

The future is now

It is pertinent to note that while drone swarms may not be ready as an end state ‘product', proliferation of basic swarming technology is inevitable in the coming decade across the world. Here advances in drone swarming, which is the next evolution of robotic warfare are mostly classified, though governments have given glimpses of their progress over the years. The question is not if, but when and where drone swarms will be utilised as part of a mature concept of operations (ConOps).

Swarming ConOps, a red herring for most nations, can only be matured with clinical and robust field trials utilising hundreds of heterogenous swarming units. It is this ‘scale and associated cost' borne by the end user which will determine a dynamic adoption, meaningful way ahead towards operationalisation and acceptable timelines of induction towards exploited usage of swarms as true agents of warfare. It is here that countries like the United States and China have a distinct advantage over the rest of the world towards deployment of swarm drone capabilities across the spectrum of missions, at a scale which will tilt the balance in their favour in the digitally contested airspace of tomorrow.

Sameer Joshi is a retired Indian Air Force fighter pilot with experience on the MiG-21 and Mirage-2000 jets. Besides being a start-up entrepreneur, he has serious interests in aerospace & defence and military history.

https://theprint.in/defence/drone-swarms-are-coming-and-they-are-the-future-of-wars-in-the-air/596842/

Sur le même sujet

  • What will top the Space Force to-do list?

    30 août 2018 | International, C4ISR

    What will top the Space Force to-do list?

    By: Kelsey Atherton In the late 1980s and early 1990s, the Air Force's Global Positioning System was a continuous target. “Every year [as] we went through the budget cycle the United States Air Force ... tried to kill the GPS program,” Gen. John Hyten, now head of U.S. Strategic Command, said during a 2015 speech. “Why would they kill the GPS program? It's really very simple: ‘Why would we need a satellite navigation system when we have perfectly good [inertial navigation system, or] INS for airplanes? Why would we do it?' Nobody could see the future of what GPS was going to bring to the world.” First developed and launched late in the Cold War, GPS made its combat debut in Operations Desert Shield and Desert Storm and ever since has informed the movements and targeting capabilities of the Department of Defense. More than that, since GPS signals were opened to the commercial world, everything from road trips to finding new restaurants to the entire development of self-driving cars has hinged around accessing the reliable signals, that let machines and people know exactly where they are in time and space. The whole architecture is simultaneously vital and vulnerable and, in the era of a pending Space Force, an unspoken mandate is that it has never been more important that the United States ensure the signal endures. It is the potential risk of losing GPS, and everything else supported by the satellite network, that serves as the foundation for much of the discussion around a new Space Force. For as long as humans have put objects into orbit, space has been a military domain, but one with a curious distinction from other fighting theaters: while land, sea and air have all seen direct armed confrontation, space is instead a storehouse for sensors, where weapons are vanishingly rare and have yet to be used in anger. “Capabilities that we have built that we now take for granted in the Air Force, the whole [remotely piloted aircraft, or RPA] fleet that we fly, is impossible without space,” Hyten said at another speech in 2015. “You cannot have Creech Air Force Base without space because the operators at Creech reach out and talk to their RPAs via satellite links. Those aircraft are guided by GPS. You take away GPS, you take away SATCOM, you take away RPAs. They don't exist anymore. All those things are fundamentally changed in the Air Force.” Looking over the horizon Missiles remain the most effective way for nations to reach out and mess with something in orbit, and so long as GPS satellites cost around $500 million to build and launch, the cost of destroying a satellite will remain cheaper than fielding satellites. There is a double asymmetry here: not only are the satellites that power the GPS network expensive to build and launch, but the United States relies on this network to a far greater extent than any adversary that might decide to shoot those satellites down. This vulnerability is one reason that the Defense Advanced Research Projects Agency is funding development of networks of smaller satellites, which are individually less capable than existing models but are cheaper to field and replace and will deploy in greater numbers, making destruction by missile a much more expensive proposition. Blackjack, the DARPA program that aims to do this, is focused on military communications satellites first, though the approach may have lessons for other satellite functions. “Better distribution, disaggregation and diversity of space capabilities can make them more resilient against attacks,” said Brian Weeden, director of program planning for the Secure World Foundation. “But the specific answer of how best to do that might be different for each capability. The specific techniques to make [position, navigation and timing, or] PNT more resilient may be different than the techniques needed to make satellite communications more resilient.” Missiles are not the only threat faced by satellites in orbit. An April 2018 report by the Secure World Foundation on Global Counterspace Capabilities details the full spectrum of weapons and tools for disrupting objects in orbit, and also the nations and, in some instances, nonstate actors that can field those tools. The nations with counterspace programs highlighted in the report include China, Russia, the United States, Iran, North Korea and India, all of which (barring Iran) are also nuclear-armed nations. Beyond anti-satellite missiles, which only China, Russia and the United States have demonstrated, the other means of messing up a satellite are the familiar bugaboos of modern machines: electronic warfare, jamming and cyberattacks. “The most important thing is that it's not always about the satellites in space. Space capabilities include the satellites, the user terminal/receivers, and the signals being broadcast between them. Disrupting any one of those segments could lead to loss of the capability,” Weeden said. “In many cases, it's far easier to jam a satellite capability rather than destroy the satellite. And, from a military perspective, the end effect is what's important.” A satellite that cannot broadcast or whose signal cannot overcome the strength of a jammer is a satellite that is functionally offline, and the means to disable satellites extend beyond the traditional strengths of near-peer competitors to the United States and down even to nonstate actors. In 2007, the Tamil Tigers reportedly hacked the ground nodes for a commercial satellite and were able to gain control of its broadcasting capabilities, and in 2008 a set of hackers demonstrated they could eavesdrop on supposedly secure Iridium signals. A decade has passed since those demonstrations, but satellite architectures change slowly, in waves of half-a-billion dollar machines launched over time. Should a vulnerability be found on the ground, there's lag time between how long it can be exploited and how long it can be rendered inert. What happens if the GPS signal stutters out of sync with time? Everything about how GPS works is bound up in its ability to precisely and consistently track time. Knowing where something is depends on knowing when something was. Without the entire network of automatic navigation aids they've built their lives around, people will fumble. Consider what happened for 11 hours on Jan. 26, 2016. “The root cause was a bug in the GPS network,” wrote Paul Tullis in Bloomberg. “When the U.S. Air Force, which operates the 31 satellites, decommissioned an older one and zeroed out its database values, it accidentally introduced tiny errors into the database, skewing the numbers. By the time Buckner's inbox started blowing up, several satellites were transmitting bad timing data, running slow by 13.7 millionths of a second.” Tullis goes on to detail the possibility and plans for a redundant ground-based navigation system that could let GPS-dependent functions of commercial machines keep working, even if a satellite slips out of sync. There is an international agreement to eventually make all signals across the Global Navigation Satellite System (GPS, Galileo, etc.) broadcast compatible civil signals. This would improve the redundancy among day-to-day civilian applications dependent upon GPS, but it would do very little for the military signals. “There is no such compatibility between the military signals of the different constellations,” says Weeden. “In fact, during negotiations with the European Union the U.S. demanded that the Galileo protected/military signal be made separate from the GPS military signal. It is possible to create receivers that can pull in the military signals from both GPS and Galileo, but it's not easy to do so securely.” GPS III, which Lockheed Martin is building, will mitigate some of this when those satellites are on orbit: the new hardware is designed with stronger signals that will make them harder to jam, but that will also require new receivers on the ground. While developers are working on making those new receivers, one way to build in redundancy would be to make GPS receivers that can use both Galileo and GPS military signals, suggests Weeden. That's a technical solution that requires at least some political finesse to achieve, but it's one possibility for making existing infrastructure more redundant. “But there are also other ways to get precision timing and navigation other than from GPS, such as better gyroscopes or even using airborne or terrestrial broadcasts of PNT signals,” says Weeden. “These alternatives are probably not going to be as easy to use or have other drawbacks compared to GPS, but they're better than nothing.” Redundant systems or complementary systems provide a safeguard against spoofing, when a navigation system is fed false GPS coordinates in order to reroute it. Big changes in inputs are easy for humans monitoring the system, say a car's navigation or a drone flying by GPS coordinates, to spot, but subtle changes can be accepted as normal, lost as noise, and then lead people or cars or drones into places they did not plan on going. The next generation of threats Protecting the integrity of satellite communications from malicious interference is the centerpiece of a report from the Belfer Center, entitled “Job One for Space Force: Space Asset Cybersecurity.” The report's author, Gregory Falco, outlines broad goals for organizations that manage objects in space, policymakers, as well as a proposed Information Sharing and Analysis Center for space. These include everything from adopting cybersecurity practices like working with security researchers and encrypting communications to setting up a mechanism for organizations to disclose if their satellites suffered interference or hacking. If the security of GPS is suffering from anything, it is less ignorance of the threat and more complacency in the continued durability of the system as currently operating. “Cybersecurity challenges will only become more substantial as technology continues to evolve and attackers will always find the weakest link to penetrate a target system,” writes Falco. “Today, space assets are that weakest link. Space asset organizations must not wait for policy-makers to take action on this issue, as there are several steps that could be taken to secure their systems without policy guidance.” The fourth domain of space is more directly threatened by threats traveling through the fifth domain of cyberspace than anything else. To the extent that space requires a specialized hand, it is managing from the start to the launch the specific vulnerabilities of orbital assets, and the points at which they are controlled from the ground. Perhaps the way to address that specific problem is a Space Force framed around the physical and cybersecurity needs of satellites. Raytheon is the contractor tasked with building GPS OCX, the next-generation operational control system for the satellite network. After years of delay in the program, Block 0 of the OCX deployed in September 2017, putting in place a system that could manage the launch and early orbit management of the new GPS satellites. Besides managing the satellites, the control system has to ensure that only the right people access the controls, and that means extensive cybersecurity. Raytheon says that, together with the Air Force, the company recently completed two cybersecurity assessments, including a simulated attack by an adversary. While Air Force classification prevents Raytheon from disclosing the results of that test, the company's president of intelligence, information and services, Dave Wajsgras, offered this: “We've built a layered defense and implemented all information assurance requirements for the program into this system. We're cognizant that the cyber threat will always change, so we've built GPS OCX to evolve and to make sure it's always operating at this level of protection.” Ideally, this massive job of protecting GPS will fall to the Space Force. “One of the big drivers for the Space Force is improving the space acquisitions process, and another is developing better ways to defend U.S. military satellites against attack,” says Weeden. “So, in that context, the Space Force debate could impact the future of GPS.” Yet many of the answers to vulnerabilities in space are not found in orbit, and it's possible that shifting the full responsibility for signal security to a body built around managing satellites would miss the ways greater signal redundancy can be built in atmospheric or terrestrial systems. The Army and Navy are funding GPS alternatives, but that funding is minuscule by Pentagon standards. “The United States should take smart steps to make its space force more resilient,” writes Paul Scharre of the Center for New American Security, “but the U.S. also needs to be investing in ways to fight without space, given the inherent vulnerabilities in the domain.” https://www.c4isrnet.com/c2-comms/satellites/2018/08/29/what-will-top-the-space-force-to-do-list

  • NATO releases first ever quantum strategy

    17 janvier 2024 | International, Terrestre, C4ISR

    NATO releases first ever quantum strategy

    Quantum technologies are getting closer to revolutionizing the world of innovation and can be game-changers for security, including modern warfare. Ensuring that the Alliance is ''quantum-ready'' is the aim of NATO’s first-ever quantum strategy that was approved by NATO Foreign Ministers on 28 November. On Wednesday (17 January 2024), NATO releases a summary of the strategy.

  • Defense planning takes a back seat in Britain’s struggle to shake the coronavirus

    23 juin 2020 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

    Defense planning takes a back seat in Britain’s struggle to shake the coronavirus

    By: Andrew Chuter LONDON — Producing a promised new defense and security review was never going to be straightforward for the British government, but the impact of the COVID-19 crisis and the fast-evolving geostrategic position has muddied the waters even further, leaving open the question of future investment priorities. The integrated defense, security and foreign policy review ordered by Prime Minister Boris Johnson soon after he entered office last December was meant to provide answers to how Britain would make its way in the world post-Brexit. That exercise is partly, but not entirely, on ice as the government focuses its attention on trying to control COVID-19 without putting the economy back in the Stone Age. Completion of the review has been pushed back from this summer to sometime next year. Stephan Lovegrove, the Ministry of Defence's permanent secretary, told the parliamentary public accounts committee recently that some work on the review was ongoing, with early results expected to emerge this year. “There will potentially be something direction-setting later this year. Exactly how full that is, I do not know. Our view is that the fuller it can be, the better,” Lovegrove said. One MoD official, who asked not to be named, said one of the key items now being worked on was a look at the balance of economic priorities versus national security priorities. It's a key question, the answer to which will likely set the scene for decisions on defense investment priorities for years to come. Johnson's original claim that the review would be policy driven, not financially compelled, is no longer the case — if it ever was. Independent analyst John Louth says that post COVID-19, it's going to be all about the money. “Without doubt the pandemic has changed everything. It [the review] is going to be driven by affordability,” Louth said. Defense commentator Howard Wheeldon of Wheeldon Strategic Advisory said funding was going to be a big problem across the West. “Pressures on Western governments in relation to defense spending have probably never been greater. But while we are seeing a significant awareness of the need to invest in activities like cyber, space and ISTAR we cannot afford to ignore the ongoing need to invest in conventional weapons,” he said. “China is investing heavily in air and maritime, and Russia, despite economic pressures, is increasing spend on conventional weapons. Given that COVID-19 has impacted on virtually every nation we must expect that defense spending will be impacted in the medium term,” Wheeldon said. “For the UK we must anticipate cuts in legacy systems across all three services but I am of the view that the army will bear the brunt when it comes to capacity reduction,” he added. It's not just affordability that is the issue. The pandemic is focusing the minds of parliamentarians and others on issues like homeland resilience. The military here have been lauded for their efforts supporting the fight against COVID-19 but it could eventually come at a cost, according to Doug Barrie, a senior analyst at the International Institute for Strategic Studies think tank in London. “The recognition for greater societal resilience, and the associated cost of this, as a result of the pandemic threatens to be a draw on the U.K.'s armed forces in terms of personnel and future investment — this will put pressure on defense expenditure across the board,” Barrie said. “A neutral budget would be a success for MoD, but I can see some projects being postponed and platform capabilities trimmed as a near term measure,” he added. It wouldn't be so bad if the defense equipment budget was currently under control, but it's not. The National Audit Office, the government's financial watchdog, reckons the current equipment plan has been unaffordable for several years. The worst-case scenario puts the 10-year equipment budget shortfall at £13 billion (U.S. $16 billion) says the NAO. While a decision by Johnson and his advisors on Britain's strategic road map is thrashed out the MoD is living pretty much hand-to-mouth, balancing the books annually by in-year reductions in equipment spending and other measures. Lovegrove told the parliamentary committee the MoD is focusing on smaller programs to cut to leave the government with space to make decisions on more strategic issues during the defense review. Such an approach does have financial consequences, though. “What we typically seek to do is to look at some of the less strategic capabilities, which we are capable of making decisions on outside of a full-blown, multi-year strategic review, and ask difficult questions of those for the [Service] Commands. Ultimately, we would like the Commands to make their own decisions. Sometimes those are cut; more often, they are deferred and descoped,” he said. “Deferring programs in order to give ministers proper choices within a strategic context has the result of pushing the bow wave of the unbalanced budget out a year or two, making it a bit bigger,” the permanent secretary said. “There is a cumulative effect of doing what we have to do to maintain the integrity of the program of record when the balance is out of whack, in that we defer for a year, then defer for a year, then put projects on shorter rations. The bow wave becomes bigger. You see that in the nature of the more difficult financing position that we have for the next three or four years. ... So, yes, I think that the program is very tight and getting tighter,” Lovegrove warned. Without the results of the review the defense sector is operating in a bit of a vacuum on the equipment front. Louth said that ultimately what the MoD spends its money on will be dictated by an as yet unknown view of Britain's foreign policy goals in a post-coronavirus, post-Brexit era. “Where the money is invested depends what they [the government] want to do. The problem is can anybody put their hand up and say ‘we understand what theUK strategic ambition is at the moment,” he said. Despite the strategy vacuum the review likely heralds significant change to investment priorities, according to Wheeldon. “I see a huge change of approach emerging in the UK — one that will concentrate more resources on internal defense, cyber and space and less on conventional armies and battlefield activities. The UK will remain committed to air and maritime and in particular ISTAR and carrier strike. Whilst retaining the overall air and maritime commitment to the NATO alliance I envisage a shift away from front-line land systems support to that of increased ISTAR, space and cyber,” Wheeldon said. Which sectors will see the money invested ? “My money would remain very much on ensuring we have sufficient air and maritime capabilities, particularly ISTAR, and fast jet and surface and sub-surface maritime capability. Investing in space is crucial, investing in cyber is hugely important. I also remain committed to replacement of our nuclear deterrent capability,” Wheeldon said. Barrie agreed about the key requirement to invest in sectors like cyber, space and ISTAR, but cautioned that even here “ambitions will have to be shaped by budgetary reality.” In a paper published in March as the COVID-19 crisis took hold, the Royal United Services Institute's deputy director-general, Malcolm Chalmers, and Will Jessett, a former strategy director at the MoD, offered a view of Britain's defense priorities should be in the future. Britain's new policy should be encapsulated in a new doctrine of enlightened national interest, they said. “Under such an approach, the first priority for the armed forces should be the defense of the UK homeland and its immediate neighborhood. ... The shape of expeditionary forces should now be determined primarily through the need to work closely with NATO allies in defense of Europe and its immediate neighborhood,” the two analysts said. The analysts' view of local and regional defense is partly reflected in their equipment list for Britain's future forces. “Defence priorities over the coming decade need to include robust air defense of the UK (and the Republic of Ireland), strengthened coastal defenses against limited incursions, protection of infrastructure (defense and civil) against virtual and physical attack, and maintaining the ability to provide adequate support to the civil power in national emergencies,” they said in their RUSI paper. A move towards defense of the U.K. and, through NATO, its immediate neighborhood, would represent a significant shift. Just a little over 15 months ago then-Defence Secretary Gavin Williamson was making the case for Britain competing for its interests on a global playing field. “In an era of great power competition we cannot be satisfied simply by protecting our own backyard” Williamson said in a speech at RUSI. Britain has spent billions of pounds building two new F-35 equipped aircraft carriers as part of that policy and needs to invest heavily to buy additional jets and carrier strike support vessels. But a swing towards beefing up defenses in Europe may gain more traction following U.S. President Donald Trump's recent announcement he was withdrawing thousands of troops from Europe. Whether or not Trump means it, or is playing to the gallery ahead of the U.S. elections in November, is unclear, but a significant reduction in U.S. manpower would go right to the heart of NATO planning assumptions. Causing European powers like Britain to rethink how they address the need for their forces to maneuver against a potential adversary like Russia without significant US military support. Louth said the Russian's pushing west to regain territory lost since the end of the Cold War is not as unthinkable as it once was. “We have to be able to address that level of uncertainty and in defense that must be about protecting Europe's borders. What it means is you have to have an investment strategy and a capability generation process that allows you to protect those borders by being able to maneuver across a highly amorphous battlefield across a number of domains.The physicality of force goes to the heart of deterrent,” the analyst said. https://www.defensenews.com/smr/transatlantic-partnerships/2020/06/22/defense-planning-takes-a-back-seat-in-britains-struggle-to-shake-the-coronavirus/

Toutes les nouvelles