19 septembre 2023 | International, Terrestre
Saab Secures U.S. AT4 and Carl-Gustaf Ammunition Order
The extension will allow the U.S. customer to place orders of Saab’s world-leading close combat solutions for up to an additional USD 422 million.
13 janvier 2021 | International, Aérospatial
By Arnaud Sobrero
The Japanese archipelago lies in a volatile region rife with historical tensions and territorial disputes. China's defense spending has increased at a double-digit rate annually for much of the past three decades. The People's Liberation Army (PLA) has drastically modernized its air capabilities with development of the J-20 fighter and the upcoming FC-31, and has demonstrated consistently assertive behavior, including airspace violations and military buildups in the South China Sea.
North Korea, a nuclear power since 2006, has also shown belligerence by firing ballistic missiles into the Sea of Japan, while Russia has violated Japanese airspace on several occasions prompting Japan to scramble its F-15J fleet.
Those geopolitical challenges are clearly stated in Japan's Mid Term Defense Plan and National Defense Plan Guidelines, which define Japan's long-term procurement strategy. To effectively address those security challenges, these documents claim, the Japan Air Self-Defense Force (JASDF) needs to modernize its existing fleet and significantly upgrade its capabilities.
Japan's 200-plus-strong F-15J fleet, built under license by Mitsubishi Heavy Industries, has been the backbone of Japan's air superiority for close to 40 years. Nonetheless, they face some obsolescence issues that have led the Japanese defense ministry to purchase a $4.5 billion upgrade package to modernize 98 of them into a “Japan Super Interceptor” configuration equipped with better radar, avionics, and weaponry.
The F-2 program, co-developed with Lockheed Martin, has been facing operational challenges and has a staggering unit cost of $170 million. Even though the last F-2 was delivered in 2011, the program faces significant obsolescence issues and will remain in service for a shorter duration than the F-15J.
Given the dynamic geopolitical environment Japan finds itself in, the Japanese defense ministry is determined to fill the capability gap created by the old F-15J and the future retirement of the F-2. It has decided to purchase its first batch of 42 F-35As, destined to replace the aging F-4, followed by a second batch comprised of 63 F-35A and 42 F-35B fighters, worth $23 billion.
The F-35 is a formidable addition to Japan's military apparatus: it offers stealth, excellent sensor and networking capabilities,and an ability to fuse real-time information for rapid decision-making rather than high speed and pure dogfighting capabilities.
From a traditional standpoint, the F-35 scarcely represents the air superiority platform the JASDF wants to counter China's growing fleet of J-11 fighters, or even the more advanced platforms recently deployed by Beijing, such as the Su-35 or J-20. Japan has tried to acquire the F-22 from Lockheed Martin but ultimately failed to do so, given that the aircraft was not designed for export due to its sensitive technologies. The JASDF is still looking to acquire a stealthy, twin-engine, long-range air superiority fighter with a robust payload and advanced networking capabilities, which will provide Japan with a qualitative military edge over growing Chinese air capabilities.
ADVERTISEMENT
Beyond the requirement of modernizing JASDF's capabilities, maintaining a competitive defense industrial base has been a primary strategic goal for Japan. After the Second World War, Japan spent decades rebuilding its aerospace sector, building U.S. military aircraft under license, including the F-86, F-4, F-15, CH-47, and P-3. Building sophisticated aircraft under license has been Japan's de facto strategy to acquire new technologies and upgrade its industrial base skills.
Japan has historically relied on U.S. companies to import military hardware through the Foreign Military Sales (FMS) framework. These imports have increased considerably in the last decade, its proportion of the country's total defense budget rising from 0.9 percent in 2010 to 8.9 percent in 2019 with big-ticket items like the F-35, the MV-22, and the E-2D being procured through the government-to-government route. Outside of servicing those types of equipment, tier 1 and tier 2 domestic companies have not benefited from those FMS programs. Japanese companies face restrictions on sharing some critical software intellectual property and technical data from equipment that has originated in the U.S. original. Even Japan's industrial participation in the manufacture of the F-35 has been a far cry from what the local industry had envisioned initially, when Japanese companies were seeking a larger role in the aircraft's production. Recently, in a blow to U.S. military exports, the Japanese defense ministry has decided to scrap two major programs – the Global Hawk and the Aegis Ashore – due to some price and technical issues.
These developments may suggest that Japan is potentially reconsidering its engagement with the U.S. on military hardware and could utilize government funds instead for domestic development to enhance the competitiveness of its defense industrial base and, more importantly, gain full control of defense capabilities, as well as on future upgrades. According to the ministry of defense's Acquisition, Technology & Logistics Agency, Japan is looking to leverage the technologies the industry has captured through license production, as well as the development of the experimental ATD-X stealth aircraft, for the development of an indigenous fighter, known as F-X. This would represent a shift in Japan's long-term procurement strategy and could indicate that Japan is now looking to partner for the design and manufacturing of sixth-generation fighter aircraft technologies.
After former Prime Minister Abe Shinzo's return to power in 2012, he stopped years of decline in defense spending by boosting investments modestly. After eight years of slow but steady increase, the Japanese defense budget stands at a record of about $51.6 billion with the FY21 budget request. In addition, the Japanese defense ministry decided to “convert” its Izumo helicopter destroyer into a small aircraft carrier capable of accommodating 12 F-35B jet fighters, which will strengthen Japan's offensive capabilities. Following the lift of the ban on defense exports, Japan had seen last year its first successful military export, with the sale of air radar systems to the Philippines.
Japan would likewise welcome an opportunity to export the F-X, its future sixth-generation fighter, with the assistance of an international partner – if not to promote military ties with friendly nations, then in order to reduce the tremendous development cost. Of all the challenges the F-X program will face, its affordability will be the most pressing.
The F-X program represents a clear continuation of Abe's robust defense doctrine and will further cement its legacy into Japan's long-term military modernization. By bolstering the country's domestic defense industrial base and by enabling technological transfer, the F-X program will help Japan catch up with China and Russia in the stealth fighter market.
Based in Asia for more than 10 years, Arnaud Sobrero is an independent writer focused on defense technology and East Asian affairs.
https://thediplomat.com/2021/01/does-japan-need-to-develop-a-new-fighter-aircraft/
19 septembre 2023 | International, Terrestre
The extension will allow the U.S. customer to place orders of Saab’s world-leading close combat solutions for up to an additional USD 422 million.
16 janvier 2020 | International, Aérospatial
Over the last five years Rolls-Royce has been pioneering world-first technology that will contribute to the UK's next-generation Tempest programme. In an aim to be more electric, more intelligent and to harness more power, Rolls-Royce recognised that any future fighter aircraft will have unprecedented levels of electrical power demand and thermal load; all needing to be managed within the context of a stealthy aircraft. Before the launch of the Tempest programme, Rolls-Royce had already started to address the demands of the future. Back in 2014, the company took on the challenge of designing an electrical starter generator that was fully embedded in the core of a gas turbine engine, now known as the Embedded Electrical Starter Generator or E2SG demonstrator programme. Conrad Banks, Chief Engineer for Future Programmes at Rolls-Royce said: "The electrical embedded starter-generator will save space and provide the large amount of electrical power required by future fighters. Existing aircraft engines generate power through a gearbox underneath the engine, which drives a generator. In addition to adding moving parts and complexity, the space required outside the engine for the gearbox and generator makes the airframe larger, which is undesirable in a stealthy platform." Phase two of this programme has now been adopted as part of Rolls-Royce's contribution to the Tempest programme. As part of this journey, the company has been continuously developing its capabilities in the aerospace market, from gas turbine technologies through to integrated power and propulsion systems. The goal being to provide not only the thrust that propels an aircraft through the sky, but also the electrical power required for all the systems on board as well as managing all the resulting thermal loads. Rolls-Royce is adapting to the reality that all future vehicles, whether on land, in the air or at sea will have significantly increased levels of electrification to power sensors, communications systems weapons, actuation systems and accessories, as well as the usual array of avionics. The launch of phase one of the E2SG programme saw significant investment in the development of an integrated electrical facility – a unique test house where gas turbine engines can be physically connected to a DC electrical network. The launch of the second phase of the project in 2017 saw the inclusion of a second electrical generator connected to the other spool of the engine. It also included an energy storage system in the electrical network and the ability to intelligently manage the supply of power between all these systems. The two-spool mounted electrical machines allows, by combination of operation as either a motor or a generator, the production of a series of functional effects on the engine, including the transfer of power electrically between the two spools. As part of the E2SG programme, Rolls-Royce is investigating the feasibility of using dual spool generation to influence the operability, responsiveness and efficiency of the engine. Another key technology under development is the Power Manager intelligent control system, which uses algorithms to make real time intelligent decisions about how to supply the current aircraft electrical demand while optimising other factors including engine efficiency to reduce fuel burn or engine temperature to extend component life. Throughout the Tempest programme, Rolls-Royce will be continuing to mature the electrical technologies demonstrated by the E2SG programme, with a third phase of testing likely to include a novel thermal management system being integrated with the overall system, as well as more electric engine accessories. The company also intends to showcase a full-scale demonstrator of an advanced power and propulsion system. There will be new technologies in all parts of the gas turbine, including twin spool embedded generation to higher power levels, an advanced thermal management system, an energy storage system tailored to the expected duty cycle of the future fighter and an intelligent power management system which will be able to optimise the performance of both the gas turbine and the power and thermal management system. Press release issued by Rolls-Royce plc Defence Aerospace on January 9, 2020 http://www.airframer.com/news_story.html?release=73226
2 août 2023 | International, Aérospatial
However, much remains undecided over how to field an advanced refueling aircraft the service now calls the next-generation aerial refueling system.