1 mars 2019 | International, Autre défense

DARPA: Taking the Next Step in Quantum Information Processing

Universal quantum computers with millions of quantum bits, or qubits – which can represent a one, a zero, or a coherent linear combination of one and zero – would revolutionize information processing for commercial and military applications. Realizing that vision, however, is still decades away. The problem is the performance and reliability of quantum devices depend on the length of time the underlying quantum states can remain coherent. If you wait long enough, interactions with the environment will make the state behave like a conventional classical system, removing any quantum advantage. Often, this coherence time is significantly short, which makes it difficult to perform any meaningful computations.

To exploit quantum information processing before fully fault-tolerant quantum computers exist, DARPA today announced its Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) program. This effort will pursue a hybrid concept that combines intermediate-sized quantum devices with classical systems to solve a particularly challenging set of problems known as combinatorial optimization. ONISQ seeks to demonstrate the quantitative advantage of quantum information processing by leapfrogging the performance of classical-only systems in solving optimization challenges. A Proposers Day for interested proposers is scheduled for March 19, 2019, at the Executive Conference Center in Arlington, Virginia: https://go.usa.gov/xEp8M

“A number of current quantum devices with more than 50 qubits exist, and devices with greater than 100 qubits are anticipated soon,” said Tatjana Curcic, program manager in DARPA's Defense Sciences Office. “Qubits' short lifetime and noise in the system limit how many operations you can do efficiently, but a new quantum optimization algorithm has opened the door for a hybrid quantum/classical approach that could outperform classical systems.”

Solving combinatorial optimization problems – with their mindboggling number of potential combinations – is of significant interest to the military. One potential application is enhancing the military's complex worldwide logistics system, which includes scheduling, routing, and supply chain management in austere locations that lack the infrastructure on which commercial logistics companies depend. ONISQ solutions could also impact machine-learning, coding theory, electronic fabrication, and protein-folding.

ONISQ researchers will be tasked with developing quantum systems that are scalable to hundreds or thousands of qubits with longer coherence times and improved noise control. Researchers will also be required to efficiently implement a quantum optimization algorithm on noisy intermediate-scale quantum devices, optimizing allocation of quantum and classical resources. Benchmarking will also be part of the program, with researchers making a quantitative comparison of classical and quantum approaches. In addition, the program will identify classes of problems in combinatorial optimization where quantum information processing is likely to have the biggest impact.

“If we're successful, the outcome of ONISQ will be the first demonstration of a quantum speedup compared to the best classical method for a useful problem,” Curcic said.

ONISQ seeks multidisciplinary teams with expertise in experimental and theoretical physics, computer science and applied mathematics among others. DARPA plans to release a Broad Agency Announcement (BAA) solicitation in several weeks at: http://go.usa.gov/Dom.

https://www.darpa.mil/news-events/2019-02-27

Sur le même sujet

  • The Key To All-Domain Warfare Is ‘Predictive Analysis:’ Gen. O’Shaughnessy

    6 mai 2020 | International, C4ISR

    The Key To All-Domain Warfare Is ‘Predictive Analysis:’ Gen. O’Shaughnessy

    By THERESA HITCHENS on May 05, 2020 at 3:23 PM WASHINGTON: Northern Command head Gen. Terrence O'Shaughnessy says the key to winning tomorrow's all-domain wars is predicting an adversary's actions — as well as the impacts of US military responses — hours and even days in advance. The capability to perform such “predictive analysis” will be enabled by the US military's Joint All-Domain Command and Control (JADC2) initiative for managing high-speed battle across the air, land, sea, space and cyber domains,” he told the Mitchell Institute yesterday evening in a webinar. “We see JADC2 is absolutely core to the way we're gonna defend the homeland,” O'Shaughnessy enthused. “And the part that I think is going to be so incredibly game-changing is the ability for us to really use predictive analysis and inform our decisions going into the future.” “That's, to me, what JADC2 is going to do: it's going to inform our decision-makers, it's going to help them make decisions that, like playing chess, are thinking about two or three moves downstream,” he added. “It's going to give the decision-makers, at the speed of relevance, the ability to make really complex decisions.” NORTHCOM was a key player in the Air Force's first “On Ramp” demonstration in December of technologies being developed under its Advanced Battle Management System effort, which the service sees as a foundation for JADC2. O'Shaughnessy said he is excited that NORTHCOM will be expanding its participation in the next demonstration, now slated for late August or early September having been pushed back from its original April data due to the COVID-19 coronavirus pandemic. O'Shaughnessy said JADC2 also will be critical for providing much-needed improvements to domain awareness in the Arctic. The US military has to “put together a bigger ecosystem for sensing” rather than relying on “traditional stovepiped systems” in the High North, he explained. That ecosystem needs to fuse information from as many systems as possible — from submarines patrolling beneath the icy waters to ground-based radar to long-endurance unmanned drones to future sensors based on large constellations of Low Earth Orbit satellites — which is exactly the goal of JADC2. “We have to continue to work on our ability to see the approaches to our homeland and understand what what is there and be able to react to it,” said O'Shaughnessy, who also is the commander of NORAD. As Breaking D readers know, the US military is turning an increasingly worried eye toward the Arctic where Russia and China both have begun to covet as a future zone of economic wealth as the Earth's climate opens shipping routes and expands access to undersea oil. O'Shaughnessy said he sees three areas where more investment is required to up the US military's game in the Arctic: communications, training, and infrastructure. Communications at northern latitudes is a particular struggle due to the difficulties of laying fiber optic cable in the harsh terrain, and the paucity of satellite coverage in the region. This, he said, is why NORTHCOM is extremely interested in the potential for so-called proliferated LEO satellite constellations. — both those currently being built by commercial firms and any future military networks. As Breaking D readers are well aware, DoD's Space Development Agency is planning a multi-tiered network of satellites in LEO that includes “data transport” satellites to allow faster communications between satellites and air-, land- and sea-based receivers that Director Derek Tournear sees as integral to JADC2. DARPA also is experimenting with proliferated LEO architectures under its Blackjack program, which plans 20 satellites using various buses and payloads to test their capabilities by the end of third-quarter 2022. DARPA late last month selected Lockheed Martin to undertake Phase 1 satellite integration of satellite buses with payloads and the central Pit Boss C2 system under a $5.8 million contract. SEAKR Engineering announced on April 28 that it had been granted a sole source Phase I, Option 2 contract (under a three-phased program plan) to develop a Pit Boss demonstrator, beating out two other teams led, respectively, by BAE and Scientific Systems. “One of the things we find is after you get above about 65 degrees or so north, some of our traditional means of communications really start breaking down,” he said, “and once you get closer to 70, almost all except for our most exquisite communications capability really starts to break down. And so we see a need to relook our ability to communicate in the Arctic” — with proliferated LEO “one of the best approaches.” “If you look at some of the companies out there doing incredible things, we see that as a solution set to allow us to communicate in the Arctic in the relatively near future, and that will be critical,” he added. https://breakingdefense.com/2020/05/the-key-to-all-domain-warfare-is-predictive-analysis-gen-oshaughnessy

  • Northrop Grumman to Develop Advanced Air-to-Air Missile Engagement Concept

    12 février 2021 | International, Aérospatial

    Northrop Grumman to Develop Advanced Air-to-Air Missile Engagement Concept

    Posted on February 11, 2021 by Seapower Staff REDONDO BEACH, Calif. — Northrop Grumman Corp. has been awarded a contract by the U.S. Defense Advanced Research Project Agency (DARPA) Tactical Technology Office to develop an advanced technology weapon concept designed to significantly increase engagement range and weapon effectiveness of U.S. forces against adversary air threats, the company said in a Feb. 10 release. “Our collaboration with DARPA is the critical first step in the development of innovative operational concepts and solutions that will enhance our warfighter's combat capability against a rapidly growing threat,” said Jaime Engdahl, program director, kinetic weapons and emerging capabilities, Northrop Grumman. “The LongShot program enables us to combine our digital engineering skillset with our extensive knowledge in advanced technology weapons, autonomous systems and strike platforms to increase weapon range and effectiveness.” Spurred by rapid technological advancements and an ever more dangerous and disruptive battlefield, DARPA's LongShot program will explore new lethal engagement concepts by leveraging multi-modal propulsion, weapon systems that can be operationally deployed from existing fighters or bombers. DARPA's advanced aerospace systems activities are focused on utilizing high pay-off opportunities to provide revolutionary new system capabilities, as opposed to incremental or evolutionary advancements, in order to achieve undeterrable air presence at dramatically reduced costs. The LongShot program enables Northrop Grumman to combine its expertise in weapon system design, survivability, autonomy, advanced mission systems and rapid prototyping to deliver advanced solutions that help to maintain a competitive military advantage in highly contested environments. https://seapowermagazine.org/northrop-grumman-to-develop-advanced-air-to-air-missile-engagement-concept/

  • GAO blasts contractor-led F-35 maintenance as costly, slow

    24 septembre 2023 | International, C4ISR

    GAO blasts contractor-led F-35 maintenance as costly, slow

    Without key technical data from F-35 manufacturer Lockheed Martin, GAO said military maintainers can't fix some parts — or even learn how to fix them.

Toutes les nouvelles