15 février 2023 | International, Autre défense
NATO summit defense spending pledges may exceed 2% target, Austin says
Members nations hold their next summit in the Lithuanian capital Vilnius in July.
18 février 2019 | International, C4ISR
Goliath grouper, black sea bass, and snapping shrimp, along with bioluminescent plankton and other microorganisms, are set to be the unlikely heroes of DARPA's Persistent Aquatic Living Sensors (PALS) program. Five teams of researchers are developing new types of sensor systems that detect and record the behaviors of these marine organisms and interpret them to identify, characterize, and report on the presence of manned and unmanned underwater vehicles operating in strategic waters. This new, bio-centric PALS technology will augment the Department of Defense's existing, hardware-based maritime monitoring systems and greatly extend the range, sensitivity, and lifetime of the military's undersea surveillance capabilities.
DARPA first announced the PALS program in February 2018 with the goal of incorporating biology into new solutions for monitoring adversary movements across the seemingly endless spaces of the world's oceans and seas. Ubiquitous, self-replicating, self-sustaining sea life is adaptable and highly responsive to its environment, whereas maritime hardware is resource intensive, costly to deploy, and relatively limited in its sensing modalities. According to PALS program manager Lori Adornato, “Tapping into the exquisite sensing capabilities of marine organisms could yield a discreet, persistent, and highly scalable solution to maintaining awareness in the challenging underwater environment.”
The DARPA-funded PALS teams must develop or apply technologies to record stimulus responses from observed organisms, and develop combined hardware and software systems that interpret those responses, screen out false positives, and transmit analyzed results to remote end users. The teams' solutions will incorporate technologies such as hydrophones, sonar, cameras, and magnetic, acoustic, and kinetic sensors.
DARPA is also funding the Naval Undersea Warfare Center, Division Newport, under principal investigator Lauren Freeman, to develop a seafloor system that uses a hydrophone array and acoustic vector sensor to continuously monitor ambient biological sound in a reef environment for anomalies. The system will analyze changes in the acoustic signals radiated by the natural predator-avoidance response of coral reef ecosystem biota, which could offer an indirect mechanism to detect and classify underwater vehicles in near-real time.
DARPA conceived of PALS as a four-year research program with the expectation that researchers will be able to publish results for review by the broader scientific community. However, if DARPA identifies any of the data, results, or technical specifications as controlled unclassified information, DARPA will require the PALS researchers to protect them to prevent proliferation outside of official channels.
15 février 2023 | International, Autre défense
Members nations hold their next summit in the Lithuanian capital Vilnius in July.
10 novembre 2021 | International, Aérospatial
AW169 software updates boost engine performance while aerodynamic changes adjust flight handling.
21 novembre 2022 | International, Aérospatial, Naval, Terrestre, C4ISR
NATO allies may decide to aim to spend more on defence than their current target of 2% of national output when they meet for their next summit in Vilnius in July 2023, the chief of the alliance said on Monday.