20 décembre 2018 | International, C4ISR

DARPA Awards Six Teams During Final Spectrum Collaboration Challenge Qualifier

On December 12, DARPA held the second preliminary event of the Spectrum Collaboration Challenge (SC2) – the world's first collaborative machine-intelligence competition to overcome spectrum scarcity. Fifteen teams represented by members from across the academic, commercial and defense landscapes gathered at Johns Hopkins University Applied Physics Laboratory (APL) to pit their intelligent radio designs against each other in a head-to-head competition. At the event's conclusion, six of the eight top-scoring teams walked away with $750,000 each in prize money. While not all competitors received interim prizes, all 15 teams have an opportunity to move on to the next stage and compete in the 2019 Spectrum Collaboration Challenge grand finale, which will be held in conjunction with MWC19 Los Angeles, in partnership with CTIA, on October 23, 2019.

The six prize-winning teams from the second preliminary event are:

  • Zylinium, a team of independent researchers
  • MarmotE from Vanderbilt University
  • Sprite from Northeastern University
  • Erebus, a team of independent researchers
  • Gator Wings from University of Florida
  • SCATTER from IDLab, an imec research group at Ghent University and University of Antwerp, and Rutgers University

"During the second preliminary event we witnessed a technological shift," said Paul Tilghman, the DARPA program manager leading SC2. "For the first time, we saw autonomous collaboration outperform the status quo for spectrum management."

Starting in early December, each team's radio participated in 105 matches against competitors in the Colosseum, a massive RF testbed that was developed specifically for SC2. The matches were held in a round-robin fashion where each radio network – working in groups of threes, fours or fives – had multiple opportunities to compete against every other radio design in the competition. Roughly 400 matches were held in total to determine the final team rankings and the prize recipients.

During the PE2 matches, teams were put through six different RF scenarios designed to mimic the challenges that collaborative, autonomous radios will face in the real world. These scenarios challenged the radios to collaboratively mitigate interfering with an incumbent radio system, sense and adapt to the spectrum demands of high-traffic environments, handle the data demands of the connected soldier of the future, and beyond. Each scenario was designed to pressure test various elements of the teams' approaches and, in particular, their ability to successfully collaborate with the other radios operating within the same environment.

“The six different scenarios were closely aligned to actual situations that our defense and commercial systems face in the field. The Wildfire scenario, for example, replicates the complex communications environment that surrounds an emergency response situation, while the Alleys of Austin scenario was designed to mimic what's needed to help dismounted soldiers navigate and communicate as they sweep through an urban environment. This real-world relevance was critical for us as we want to ensure these technologies can continue to develop after the event and can transition to commercial and/or military applications,” said Tilghman.

The sixth scenario of the competition was used to determine the six prize winning teams. This scenario explored the essential question of the SC2 competition: can the top teams' collaborative SC2 radios outperform the status quo of static allocation? Each of the six teams that received awards at PE2 demonstrated that their radio was capable of carrying more wireless applications without the aid of a handcrafted spectrum plan, while simultaneously ensuring four other radio networks operating in the same area had improved performance. In short, each of these six radio networks demonstrated the autonomous future of the spectrum.

To aid with decision making, teams applied AI and machine learning technologies in various ways. Some leveraged the current generation of AI technologies like deep learning, while others used more conventional optimization approaches. There were also a few teams that used first wave, rule-based AI technologies.

“We're very encouraged by the results we saw at PE2. The teams' radios faced new and unexpected scenarios but were still able to demonstrate smart, collaborative decision making. PE2 showed us that AI and machine learning's application to wireless spectrum management creates a very real opportunity to rethink our current century-old approach,” said Tilghman.

The competition now enters its third year and moves closer to the finale, which will be held at one of the country's largest annual technology and telecommunications shows – MWC19 Los Angeles. More than 22,000 attendees from the broad mobile ecosystem and adjacent industry sectors will convene at this three-day event to discuss the current opportunities and future trends shaping the industry. The SC2 championship event will be held on the keynote stage of MWC19 Los Angeles on October 23, 2019.

At the conclusion of SC2's finale, three teams will be awarded $2 million, $1 million and $750,000, respectively, for first, second and third place. The real prize, however, will be the promise of a more efficient wireless paradigm in which radio networks autonomously collaborate to determine how the spectrum should be used moment-to-moment, helping to usher in an era of spectrum abundance.

For more information about DARPA's Spectrum Collaboration Challenge, please visit: https://spectrumcollaborationchallenge.com/

https://www.darpa.mil/news-events/2018-12-19

Sur le même sujet

  • Armée française : une remontée en puissance entamée, mais « à mi-chemin »

    18 mars 2022 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

    Armée française : une remontée en puissance entamée, mais « à mi-chemin »

    Après cinq ans de hausse des crédits budgétaires, l'armée française est mieux équipée et mieux entraînée en 2022 qu'en 2017. Dans sa 4ème année d'exécution, le budget des armées atteint 40,9 Md€ au lieu de 32,3 Md€ en 2017. Les augmentations promises ont été votées avec des marches successives d'1,7 Md€ par an ; la loi de programmation militaire (LPM) votée en 2018 pour la période 2019-2025 est ainsi respectée « à l'euro près » d'après la ministre des Armées, Florence Parly. En 2022, les soldats sont aussi mieux équipés. L'armée de l'Air a reçu de nouveaux ravitailleurs, qui permettent aux avions de chasse d'être projetés à l'autre bout du monde rapidement. L'industrie de défense a aussi profité des programmes de modernisation : entre 2017 et 2022, elle a créé 30 000 emplois, relancé l'innovation et atteint des records sans précédents dans les campagnes d'exportation. La LPM prévoit de réaliser un effort encore plus intense entre 2023 et 2025 pour atteindre quelque 50 Md€ de budget, afin de préparer l'avenir. Ni l'Europe ni la France n'ont encore de systèmes d'alerte avancés antimissiles, de moyens de détecter l'ensemble des débris et objets spatiaux, ni de cloud souverain solide pour protéger leurs données en cas de cyberattaque. « La LPM a permis une remontée en puissance mais nous ne sommes qu'à mi-chemin », confirme-t-on au ministère des Armées. Les Echos du 15 mars

  • Top USAF general urges support for Next-Gen fighter - Skies Mag

    4 mars 2021 | International, Aérospatial

    Top USAF general urges support for Next-Gen fighter - Skies Mag

    Air Combat Command chief talks NGAD, Tacair study, and acknowledges current F-35 problems.

  • See highlights of Marines at a weeklong jungle warfare squad competition

    20 janvier 2022 | International, Naval

    See highlights of Marines at a weeklong jungle warfare squad competition

    Marines with 3rd Marine Division get muddy in the jungle during squad competition.

Toutes les nouvelles