17 novembre 2024 | International, C4ISR

CISA’s Vulnerability Management goes “Big” on Interns and the Results are Staggering! | CISA

Sur le même sujet

  • DARPA wants a robotic satellite mechanic launched by 2022

    7 octobre 2019 | International, Aérospatial

    DARPA wants a robotic satellite mechanic launched by 2022

    By: Nathan Strout   The Defense Advanced Research Projects Agency is on track to announce a new commercial partner for its robotic servicing payload by the end of the year, with plans to have a spacecraft in orbit in 2022. “I'm standing here with a smile on my face. The program is moving forward and things are looking good and we're very hopeful,” Joe Parrish, program manager for the Robotic Servicing of Geosynchronous Spacecraft program at DARPA, said at the 2019 Global Satellite Servicing Forum Oct. 1. “We're looking to launch RSGS in late 2022.” RSGS is intended to deliver a GEO spacecraft with a payload consisting of two large 2 meter arms and a number of tools that will allow it to perform maintenance and other work on satellites in GEO. The spacecraft will perform four main functions in space: inspection, orbital adjustments, anomaly resolution and installation of self-contained payloads. With a host of cameras onboard, RSGS will be able to inspect other satellites. This can help operators on the ground diagnose problems and inform in-orbit repairs. It can also use its arms to capture a satellite and move it, either to a new orbit or to dispose of it. DARPA envisions RSGS being able, again using its arms, to install new payloads on existing satellites, replacing legacy hardware and augmenting its mission for years to come. And, of course, RSGS will be available to traverse the GEO landscape to help satellites that fail to deploy correctly. “If somebody launches up into GEO while we're up there and a solar array fails to deploy or a reflector or antenna fails to deploy, we can come galloping to the rescue,” said Perrish. “The benefit is not to demonstrate robot arms waving around in space. The benefit is to increase the resilience of our infrastructure in space.” While DARPA is developing the payload with robotic arms, according to Parrish, DARPA needs a commercial partner to build the spacecraft that will house the payload and carry it around in orbit. “We're looking for the partner to provide the spacecraft bus — so using a heritage GEO bus that may have had some tailoring for RSGS requirements, integrating the payload and the spacecraft bus together, procuring and launching that integrated spacecraft to GEO, and then providing mission control center for operations for a long period of time,” explained Parrish. Parrish said that the full project would be turned over in due time to the commercial partner to operate RSGS for fun and profit. But DARPA has hit some stumbling blocks in securing that commercial partner. In 2017, Orbital ATK sued DARPA to stop it from developing what it saw as competition to its own satellite servicing space vehicle. While that effort failed, the company's efforts to develop its own satellite servicing program have continued. Orbital ATK was acquired by Northrop Grumman in 2018, and now the Northrop Grumman subsidiary SpaceLogistics is preparing to launch the first satellite life extension vehicle into space in the coming weeks. Then, in January, Maxar Technologies' Space Systems Loral pulled out of an agreement with DARPA to build the spacecraft to host the RSGS payload as the company moved out of the GEO construction market. DARPA has spent much of the last year working to find a new commercial partner. In May they hosted a Proposer's Day to discuss the program with potentially interested companies, and now Parrish says they expect to announce a partner toward the end of the year. “2019 has been quite a year,” said Parrish. “We are still in source selection for a new commercial partner.” Meanwhile, work on the payload itself is ongoing. The first of two flight robotic manipulator arms is in final assembly and will be shipped to the Naval Research Lab in the next two weeks, where it will be integrated into the payload. The second arm lags the first by about two months, said Parrish, and is currently in assembly. In 2020, all of the components of the payload will be sent to NRL for assembly into the actual payload. https://www.c4isrnet.com/battlefield-tech/space/2019/10/03/darpa-wants-a-robotic-satellite-mechanic-launched-by-2022/

  • Coulson’s CU-47 is ready for the fire fight

    22 mai 2020 | International, Sécurité

    Coulson’s CU-47 is ready for the fire fight

    Posted on May 22, 2020 by Howard Slutsken Leveraging its experience with fixed-wing air tankers, Coulson Aviation has unveiled its latest aerial firefighting conversion, based on the Boeing CH-47D Chinook heavy-lift helicopter. In early March, the first Coulson-Unical CU-47 was flown from the company's Port Alberni, B.C., base to the Aerial Firefighting North American 2020 conference in Sacramento, Calif. Featuring a 3,000 gallon roll-on/roll-off internal tank and an advanced Garmin avionics suite, up to 12 CH-47Ds will be converted into next-generation heli-tankers, in a partnership with Unical Aviation that was announced a year ago. “Unical provides us with the aircraft and a vast supply of parts,” explained Britt Coulson, president and COO, in an interview with Skies. “They bought the entire Canadian Forces CH-47 parts inventory and were the largest purchaser of CH-47Ds from the U.S. Army.” The twin-rotor Chinook is well known for its speed, size and payload. While the helicopter is often deployed on fire attack missions carrying a water bucket as an external load, Coulson wanted to give the CU-47 more flexibility and capability. The company's engineers had already developed a 4,000 gallon Retardant Aerial Delivery System RADS-XXL for its Lockheed C-130 Hercules tanker conversions, and that tank was shrunk to create a 3,000 gallon RADS-L for the CH-47D conversion. “It's the same overall design as the C-130. It shares most of the same hydraulic components, the same doors and the same design of a roll-in, roll-out tank,” said Coulson. Other CH-47 internal tank systems utilize the small hook well in the centre of the helicopter as the water and retardant delivery port, but according to Coulson, that has its limitations. “The other tank designs are plagued with flow rate issues, which means they don't pack enough punch to really get through [forest] canopies or drop in heavy timber – the hook well opening just isn't big enough. “The lower the flow rate you have out of your tank, the slower and lower you have to fly. The problem with a big helicopter like a Chinook is if you fly too slow and low, your downwash is going to negatively affect the ground fire conditions and your drop is going to be ineffective.” To increase and optimize the flow rate for the RADS-L, the belly of the CH-47D was modified by cutting the helicopter's lower skin and adding structure below the floor to accommodate the tank installation and a pair of drop doors, controlled by the pilots through a state-of-the-art touchscreen controller. From the same touch panel, the pilots also control the CU-47's newly-developed retractable snorkel system to refill the RADS-L tank from water sources close to a fire's location. Installed internally, the snorkel head sits flush with the belly when retracted, so that with no additional external drag, the helicopter can maintain its fast 140-knot cruise speed. In a hover, the snorkel takes just four seconds to deploy and six seconds to retract, and the pilots and flight engineer can monitor the system's operation via a high-definition belly-mounted camera feed, displayed on the touchscreen controller. “The snorkel system has exceeded our expectations and we're filling the entire tank in under two minutes,” said Coulson. With the advanced capabilities of the Garmin avionics, the relocation of the flight engineer's panel, and the new RADS-L tank, Coulson originally believed that the CU-47 could be crewed solely by two pilots, without a flight engineer. But recent operational experience led the company to rethink that strategy. “We realized that with a helicopter of this size, going into some of the smaller dip sites, to have an additional set of eyes looking out the side or back is valuable to the pilots. So we've de-modified the helicopter and gone back to a full-time flight engineer to provide that increased safety and situational awareness.” Like Coulson's C-130 conversions, the CU-47 can also be tasked with night-time firefighting missions, thanks to the Night Vision System (NVS) certification of the helicopter's avionics suite. Wearing NVS googles, the CU-47's crew work in tandem with a fire attack “Intel” helicopter's pilots. The Intel crew uses a thermal camera to evaluate the behaviour of a fire, and if a drop is required, they take a page from military ground-attack operations. Using a laser, the Intel crew designates the target for the tanker. “With a geo-referenced lock, the Intel helicopter can orbit, and the laser beam will stay on the same spot. It illuminates an area on the ground about the size of a car,” said Coulson. The first CU-47 will soon be joined by a second RADS-L equipped helicopter, two CU-47's with upgraded avionics that will fly “bucket” missions, and a fifth, tank-equipped CU-47 that will deploy as a spare. “All of our FAA testing [on RADS-L] has finished, we're just waiting for the final Supplemental Type Certificate signature,” said Coulson. “We're doing some minor cleanup to the helicopter to make sure that it's ready to go fight fires this summer.” Howard Slutsken's lifelong passion for aviation began when he was a kid, watching TCA Super Connies, Viscounts, and early jets at Montreal's Dorval Airport. He's a pilot who loves to fly gliders and pretty much anything else with wings. Howard is based in Vancouver, B.C. https://www.skiesmag.com/features/coulsons-cu-47-fire-fight

  • MBDA Enforcer missile production proposed for funding by the European Commission

    23 mars 2024 | International, Naval

    MBDA Enforcer missile production proposed for funding by the European Commission

    The EPIC project aims to increase ENFORCER production significantly and thus will contribute to the further enlargement of the series production of ENFORCER missiles at MBDA in Schrobenhausen/Germany and at...

Toutes les nouvelles