Back to news

April 20, 2018 | International, Naval

Why the Navy wants more of these hard-to-find software developers

By:

With a relative dearth of cyber expertise in the military, Congress mandated last year the services begin direct commissioning pilot programs. The Navy, however has been doing direct commissioning for highly skilled software engineers for a few years, albeit on a small scale.

The cyber warfare engineer (CWE) program is a highly competitive program with officers on five year rotations performing software or tool development for cyber operators. CWEs serve as members of the cyber mission force, the Navy's cyber mission force teams that serve as the cyber warriors for U.S. Cyber Command, producing cyber tools, but can also conduct target analysis, vulnerability research, and counter-measure development against malicious cyber activities.

Since 2011, the Navy has only recruited 25 of these commissioned officers to its ranks.

“Twenty-five developers in the Navy as military officers is definitely not enough,” Lt. Christopher Liu, the most senior cyber warfare engineer told Fifth Domain in an interview at the Navy League's Sea Air Space conference April 9.

With a relative dearth of cyber expertise in the military, Congress mandated last year the services begin direct commissioning pilot programs. The Navy, however has been doing direct commissioning for highly skilled software engineers for a few years, albeit on a small scale.

The cyber warfare engineer (CWE) program is a highly competitive program with officers on five year rotations performing software or tool development for cyber operators. CWEs serve as members of the cyber mission force, the Navy's cyber mission force teams that serve as the cyber warriors for U.S. Cyber Command, producing cyber tools, but can also conduct target analysis, vulnerability research, and counter-measure development against malicious cyber activities.

Since 2011, the Navy has only recruited 25 of these commissioned officers to its ranks.

“Twenty-five developers in the Navy as military officers is definitely not enough,” Lt. Christopher Liu, the most senior cyber warfare engineer told Fifth Domain in an interview at the Navy League's Sea Air Space conference April 9.

“We definitely need to increase the billets and increase the amount that we can hire ... to have more talents to be able to work on the cyber mission,” he said. “As soon as the number increases, we'll be able to expand the program rather than just five years to eight years, hopefully make it into a 20 year career so people can get trained up and work on missions and not be forced into different fields.”

The Pentagon has been besieged by concerns about the DoD's ability to both retain and attract cyber talent among its ranks when similar jobs in the private sector pay significantly more.

Vice Adm. Michael Gilday, commander of 10th Fleet/Fleet Cyber Command, acknowledged in recent congressional testimony that the military is not competitive with the private sector and noted that the base pay for the CWE position is around $37,000 a year.

“That's what we pay somebody to answer the phones around here,” Senator Claire McCaskill, responded to Gilday interrupting him in frustration. “We're asking them to have incredible expertise. That seems to me totally unrealistic.”

Some current CWEs feel the work they're doing inside the Navy has greater meaning than similar work they did in the private sector.

“I find that this is a lot more fulfilling,” Ensign Jordan Acedera, the most junior CWE told Fifth Domain. “You finish a project, you're given something that's a lot more challenging and that really tests you.”

For Lt. (j.g.) George John, who was formerly writing software at a stock trading company, work with the CWE provides a better environment that's not driven so much by profit margins and hitting quarterly revenue targets.

“We don't have to worry about profitability or bringing to market,” he said. “We can pursue a little more ... what's possible. Throw stuff against the wall, see what sticks, take our time to figure out a plan of action.”

One of the biggest challenges, however, is lack of knowledge of the program, even inside the Navy.

“You still walk across captains and commander who say 'CWE, what in god's name is that,” John said.

With more CWE personnel in the force, the Navy could build a more informed and skilled software engineering cadre, the group said.

“There's tons of software. Everybody has some type of software pet project,” John said. “To be able to get more CWEs on those things and coordinate with one another and say here's what [Consolidated Afloat Networks and Enterprise Services] is doing with their communications and their infrastructure. How are we doing that differently on the base side? You can talk and address security concerns with one another.

Just within the cyber operations realm, Liu said, as the headcount increases, the CWEs could work on the requirements the operational community within the cyber mission force rather than having to prioritize projects. They could even start to look at developing capability prior to a specific requirement coming in as a means of staying ahead of the game as opposed to waiting for and reacting on requirements from operators.

https://www.defensenews.com/digital-show-dailies/navy-league/2018/04/11/why-the-navy-wants-more-of-these-hard-to-find-software-developers/

On the same subject

  • Saab va moderniser les Gripen hongrois

    January 14, 2022 | International, Aerospace

    Saab va moderniser les Gripen hongrois

    La flotte de Gripen de l'armée de l'air hongroise va bénéficier d'une mise à niveau connue sous la dénomination de MS20 Block 2. Cette dernière apportera au chasseur des améliorations sur le plan avionique, liaisons de données, communications, radar mais également la capacité d'emport d'armements tels que le missile infrarouge Iris-T, le missile Meteor ou encore la GBU-49.

  • Advanced Air and Missile Defense, in the Hands of Soldiers

    May 29, 2020 | International, Aerospace, Land

    Advanced Air and Missile Defense, in the Hands of Soldiers

    May 27, 2020 - It's a cold December morning at White Sands Missile Range in New Mexico, and two surrogate cruise missile targets have just been launched, one after the other. They are flying separate courses among the jagged San Andres and Sacramento mountains toward soldiers in a U.S. Army Air and Missile Defense unit at a test site called TAC-2 – Tactical Command Post 2. These sophisticated targets precisely mimic real cruise missile threats and can take advantage of this terrain to hide from the radars and sensors commanders have positioned in the area. This can create gaps in tracking that make the job of interceptor missiles or other defensive weapons more difficult – you can't hit what you can't see. Today, though, their maneuvers won't enable them to evade detection. This is Flight Test 5 (FT-5), the most sophisticated and difficult development test yet for the Army's Integrated Air and Missile Defense (IAMD) Battle Command System (IBCS), developed by Northrop Grumman. High above the range, sensors aboard U.S. Air Force F-35 fighter aircraft see and acquire the two surrogate missiles. IBCS integrates the aircraft sensor data with that of available ground sensors, including Sentinel, Patriot weapon system and U.S. Marine Corps TPS-59 radars. All share information via the IBCS Integrated Fire Control Network (IFCN). As one sensor loses sight of the threats – and each will at some point – the targets are acquired by other sensors on the IFCN, enabling IBCS to create a precise, uninterrupted composite track of each missile's movements. With data from every sensor, IBCS produces a single integrated air picture on the screens of the air defense soldiers at TAC-2. They see every change in altitude and direction as the two surrogate missiles paint tracks across their screens. Because IBCS enables joint weapons as well as joint sensors, the defenders at the controls can select the best effector to use against these targets. Today, the soldiers are about to launch two Patriot Advanced Capability 2 (PAC-2) interceptor missiles. “Without IBCS, all those different sensors operate independently, creating opportunities for threats to avoid detection as they fly to a target,” explained Northrop Grumman IBCS Program Director Mark Rist. “Without being integrated onto a network, these sensors produce a more ambiguous, less-clear air picture, making engagements of threat systems more challenging.” He is monitoring FT-5 from miles away, in the test's mission control room. The soldiers at TAC-2 can be heard on the radio, calm but urgent voices reporting “target acquired” by airborne sensor, and talking of the “IP” or intercept point, and “kill box.” It's only been moments since the threats were launched, but now comes “Free to engage ... Missile away ... Missile away ...” One, then another PAC-2 interceptor missile is launched by the soldiers. IBCS is not only able to launch the missiles, but also plays a critical role in the engagement by actively closing the fire control loop and providing in-flight updates as the PAC-2s converge on their targets. The surrogate cruise missile targets are closing in and can now be seen on video in the control room – and then suddenly they can't: One, then the other disappears in a ball of fire as the PAC-2s destroy them. Cheers erupted in the control room, and those of Rist and his team may have been loudest among the many generals, colonels and visiting officials that day at White Sands. After years of effort, working closely and constantly with soldiers, FT-5 fully demonstrated IBCS's unprecedented capability to integrate sensors and effectors to detect, track and simultaneously engage multiple targets in flight. “Information is ammunition, and IBCS is providing soldiers with more,” Rist said. “We brought a lot of things together in this development test. It was the first including joint operations with the Air Force F-35 and Marine Corps radar systems, the first with Air Defense Artillery soldiers at the controls, and the first involving software developed using our Agile methodology.” FT-5 was the latest in a series of test successes, and further evidence of the program's maturity as soldiers train on IBCS equipment in preparation for an important Limited User Test (LUT) this spring. “I'm very proud of these soldiers and of the system's performance,” said Colonel Phil Rottenborn, Army IAMD project manager. “This was the first time soldiers conducted a live engagement using IBCS in a developmental test, and they showed we are ready to go into the operational test phase.” “Success!” said Col. Tony Behrens, Army Capability Manager for the Air and Missile Defense (AMD) Command, and a nearly 26-year career Air Defense Artillery (ADA) officer. “It showed me that an Army operator – not an engineer or software developer – can sit at that console and do his or her job. I am very comfortable and confident about the path we're on.” IBCS enables soldiers to be even more effective by integrating all the systems' data and providing a common command-and-control (C2). Soldiers will only need to learn to use the IBCS C2, instead of spending time becoming specialists on only one or two of a dozen different sensor and weapon systems. That enhances IBCS's already impressive battlefield survivability, because soldiers will be capable of using any of the available sensors with any available weapon systems at any command post connected to the self-connecting, self-healing IFCN. Also, less time will be spent in recurrent training, making more time available for teaching operators defense strategy and how to fight. The IBCS “every sensor; best effector” concept gives commanders greater flexibility in defense design, allowing them to position resources for greatest coverage in far less time essentially helping to change the way soldiers see and fight air battle. Northrop Grumman's open-architecture system-of-systems approach to IBCS eases the integration of any new or legacy sensor and effector systems, which is important for U.S. joint operations and to foreign governments. Poland has an agreement with the U.S. Army to purchase IBCS for modernization of the nation's WISLA medium-range air defense system, and other countries have expressed interest as well. With the success of FT-5, Northrop Grumman will now focus on the Army's Limited User Test planned for later this year, followed by the low-rate initial production and full-rate production phases of the system, to field IBCS to Army air defenders in fiscal year 2021. Behrens said the Army must have the IBCS capabilities to be effective and successful in future combat operations. “To me, it's beyond critical,” he said. “We're not just giving soldiers a new piece of equipment, a new piece of gear. We're going to give them an entirely new way of operating on the battlefield that is so much more efficient. But it has to start with the system that enables you to do that.” IBCS may also be the Army's first big step toward multi-domain convergence – the next level above integration. “Enabling multi-domain – or more accurately, all-domain – operations is vital to ensuring battlefield advantage and superiority,” said Brig. Gen. Brian Gibson, director of the Army's AMD Cross-Functional Team, at an Association of the U.S. Army event in early March. “When successfully fielded, IBCS will be one of the Army's pathfinder capabilities into what is becoming a top priority for our military leaders: joint, all-domain command and control.” Media Contact Kenneth Kesner 256-327-6889 Kenneth.Kesner@ngc.com View source version on Northrop Grumman: https://news.northropgrumman.com/news/features/advanced-air-and-missile-defense-in-the-hands-of-soldiers

  • Airbus awarded 5 major cyber-surveillance contracts in France

    January 29, 2020 | International, C4ISR, Security

    Airbus awarded 5 major cyber-surveillance contracts in France

    Paris, January 27, 2020 – In 2019, Airbus CyberSecurity won five new contracts with major groups or organisations in the industrial, finance and institutional sectors, some of which are operators of essential services (OIV - Organismes d'Importance Vitale). These contracts concern the surveillance and protection of their information systems and networks from an Airbus CyberSecurity SOC (Security Operations Centre). With these five new customers, about thirty large firms and organisations now rely on Airbus CyberSecurity France to monitor their IT infrastuctures. In 2019, the National Cybersecurity Agency of France, ANSSI, qualified Airbus CyberSecurity's French SOC at PDIS (Prestataire de Détection d'Incidents de Sécurité - Security Incident Detection Service Provider) level. Located at Elancourt in the Paris area, the SOC handles more than 3 billion security events every day. PDIS is the highest security level defined in the category of detection activities. This certification is relevant for French critical national infrastructure organisations identified as OIV, as they are required to monitor their critical information systems only with PDIS qualified services. Airbus runs SOCs in France, UK, Germany and Spain, where it monitors its customers' digital infrastructure and ensures early detection, containment and remediation of security incidents 24/7. @AirbusDefence @AirbusCyber #SOC Your Contact Bruno Daffix Media Relations Secure Communications, CSR +33 6 4809 9650 Ambra Canale Media Relations Airbus Cyber Security and Latin America +49 162 698 8103 View source version on Airbus: https://www.airbus.com/newsroom/press-releases/en/2020/01/airbus-awarded-5-major-cybersurveillance-contracts-in-france.html

All news