June 23, 2022 | International, Aerospace
Près de 5 G$ pour moderniser le NORAD : la part de la base de Bagotville connue plus tard
Ottawa va investir 4,9 milliards sur six ans pour moderniser et augmenter les capacités de défense du NORAD.
May 22, 2019 | International, Aerospace
LONDRES, 16 mai (Reuters) - Une nouvelle escalade des tensions commerciales affecterait les entreprises du secteur aéronautique dans leur ensemble, y compris Airbus, concurrent de Boeing, a prévenu jeudi le président exécutif de l'avionneur européen.
Dans le cadre du litige de près de 15 ans auprès de l'Organisation mondiale du commerce (OMC) qui oppose les Etats-Unis et l'Europe sur les subventions à l'industrie aéronautique, les deux parties menacent d'imposer à chacun des milliards de dollars de droits de douane.
“Les tensions commerciales que nous constatons, nous pensons qu'elles sont des tensions perdantes-perdantes”, a déclaré Guillaume Faury à la presse lors d'une visite à Londres.
Boeing a exhorté mercredi le gouvernement américain de limiter les représailles exercées sur les avions européens afin de pas nuire aux équipementiers américains.
Mais Guillaume Faury juge impossible pour les entreprises concernées de contenir les retombées liées à la détérioration du climat commercial international, qui a également conduit à une guerre douanière entre les Etats-Unis et la Chine.
“Ces tensions, et la situation commerciale, ne sont d'aucune aide pour aucun des acteurs de l'aérospatiale”, a-t-il déclaré.
“Nous ne pensons pas que nous en perdrons plus que les autres dans cette situation, mais nous pensons que cela devrait être résolu d'une manière ou d'une autre afin que les entreprises mondialisées comme dans le secteur de l'aviation puissent continuer à se développer”, a-t-il ajouté.
Guillaume Faury a par ailleurs de nouveau mis en garde sur l'impact de la sortie de la Grande-Bretagne de l'Union européenne, tout en étant moins alarmiste que son prédécesseur, Tom Enders, qui avait menacé de retirer le groupe du Royaume-Uni.
Airbus, qui produit des ailes d'avion en Grande-Bretagne et emploie 14.000 personnes dans tout le pays, profite du retard pris dans le Brexit pour “se préparer à tous les scénarios”, a déclaré Guillaume Faury, ajoutant qu'un Brexit sans accord est toujours possible, même si cela est moins probable.
“Les choses n'ont fondamentalement pas changé, et par conséquent elles s'aggravent. Ce manque persistant de clarté est (...) une distraction”, a-t-il déclaré.
“Le Royaume-Uni fait vraiment partie de notre écosystème. Nos usines et nos sites au Royaume-Uni sont très compétitifs. Nous aimerions que cela continue, quoi qu'il arrive.”
Guillaume Faury a également mis en garde contre des poursuites judiciaires contre l'Allemagne, Berlin ayant décidé en mars de prolonger de six mois l'arrêt des ventes d'armes à l'Arabie saoudite à la suite du meurtre du journaliste et opposant saoudien Jamal Khashoggi.
Cette décision remet en cause des milliards d'euros de contrats militaires, dont une commande de 10 milliards de livres (13,27 milliards de dollars) pour la vente de 48 Eurofighter Typhoon à Ryad, via un consortium dirigé par BAE Systems et comprenant l'Allemagne, Airbus et le motoriste MTU Aero Engines .
“Il est très important de clarifier les règles et de comprendre comment les partenaires comprennent qu'ils peuvent faire confiance à l'Allemagne en tant que partenaire”, a déclaré Guillaume Faury.
Ce commentaire survient alors que la France et l'Allemagne planchent sur un nouvel avion de combat dans lequel Airbus est le partenaire industriel du côté allemand. (Claude Chendjou pour le service français, édité par Benoît Van Overstraeten)
June 23, 2022 | International, Aerospace
Ottawa va investir 4,9 milliards sur six ans pour moderniser et augmenter les capacités de défense du NORAD.
October 29, 2019 | International, Aerospace
By Tony Osborne Future conflicts will require weapons that can adapt to different target sets and collaborate to hit harder. As several European nations gear up to begin the development of advanced new combat aircraft, such as the Franco/German/Spanish Future Combat Air System and the British-led Tempest project, and invest in long-range ground-based weaponry, European missile manufacturer MBDA has begun focusing its research programs on delivering these advanced capabilities. The Anglo-French Materials and Components for Missiles Innovation and Technology Partnership (MCM-ITP), led by MBDA and sponsored by the French and UK defense ministries to the tune of €13 million ($14.5 million) a year, has been developing technologies over the last 11 years to help increase the performance and lower the cost of MBDA's British and French weapons. Small to midsize enterprises (SME) and academia have participated in the program, validating technologies with more than 200 projects in eight research domains ranging from rocket propulsion to seekers and fusing, developing them up to a technology readiness level (TRL) of 4. The research program has assisted in development of the French Mica NG air-to-air missile, supporting a small active, electronically scanned array radar module for the seeker of the radar-guided version, while the Spear 3, a network-enabled guided missile being developed in the UK will use a wire-free architecture. In addition, as the Spear 3 family of weapons broadens in the future, it will use an adaptive control system. The ITP is beginning to look at technologies that can speed up the engagement chain, adapt warheads for different kinds of targets and even develop lower-cost air-breathing engines for new families of so-called remote carriers—the attritable unmanned air systems that will support future combat aircraft into theater. “We know that collaborative weapons would be a big advantage to defeat air defenses, but how we do that has not yet been quantified,” says Olivier Lucas, MBDA's director of Future Systems, speaking to Aviation Week at the MCM-ITP Conference in Birmingham, England, on Oct. 15. “We need to demonstrate the benefits you can get from these networked weapons through operational analysis,” he adds. To make collaborative weapons work, Lucas says there will need to be developments in low-cost data links to connect them, and then algorithms that can take advantage of the cooperation and ensure all these systems can still work together in environments where navigation and communication signals could be degraded. Industry has already proved it can make UAVs collaborate and swarm in formations, but as Lucas points out, this is usually done with the aid of satellite-based global positioning systems. The military is unlikely to enjoy such a luxury in a high-end conflict. All four global navigation satellite systems (GNSS)—the U.S. Global Positioning System (GPS), Europe's Galileo, Russia's Glonass and China's BeiDou—work around similar frequencies and could be easily jammed. Weapons such as cruise missiles can already operate without GNSS by relying on inertial navigation systems (INS), or if flying over land they can recognize landscapes based on internal terrain databases. But what if a considerable part of their flight is over water, where there are no landmarks? As part of the MCM-ITP, a team from MBDA, Airbus Defense and Space and French aerospace research agency ONERA have developed a means of correcting INS drift using satellite communication signals. The Resilient and Autonomous Satcom Navigation (Reason) system gives the weapon an alternative measurement signal. Many military communication satellites already have the capability of geolocating interference. Using the signals to provide navigation updates employs a reverse of that process, say engineers. They have already proved the theory by linking an INS fitted to a 4 X 4 vehicle that took signals from two of the UK's SkyNet communication satellites and compared the INS track with that of GPS, noting small deviations from course. The team believes the Reason technology will be valuable for future generations of long-range cruise missiles and anti-ship missiles such as the Anglo-French Future Cruise/Anti-Ship Weapon, currently in a concept phase. Another MCM-ITP project is looking at using artificial intelligence (AI) and a process called deep reinforcement, learning to better understand the levels of autonomy that might be needed in the engagement chain. The Human Machine Teaming (HUMAT) project considers the growing complexity and capability of modern missiles and the increasing amounts of data being collected by multilayered intelligence systems. It recognizes that human operators may need to be supported in their analysis and prioritization of threats by artificial intelligence. The two year-long program, started in November 2017, has studied different elements of the engagement chain, as well as the ethical, legal and technological constraints, with the aim of creating “robust engagement decision-making,” and “effective transfer of task responsibilities between the human operator and the machine.” The HUMAT system has benefits for the weapon command-and-control systems, particularly air-to-surface attack, but also multilayered air defense systems, say MBDA engineers. “We have to understand the information we will share with the weapons, what will be split, what is planned and what decisions are left to the group of weapons,” says Lucas. “This process has to be tuned, you can either program the trajectory of each weapon or tell the weapons: ‘Here are your targets, now do your best,'” he says. Collaborative weapons will also need to feature additional low-cost sensors to help them make their targeting decisions, including those that understand radar signal and resolution, so that the most appropriate weapon can be selected to hit a particular target successfully. Mission planning is also being addressed. MBDA engineers and academics from Queen Mary University of London have been exploring the use of deep-learning techniques to speed up the targeting process for weapons such as cruise missiles. Current air-launched cruise missiles such as MBDA's Storm Shadow/SCALP family use an imaging infrared sensor and autonomous target recognition system in the terminal phase of flight. But to recognize the target, a 3D model needs to be developed as part of the mission planning process. This process can be laborious and time-consuming, so engineers have been studying ways to create the models using satellite imagery. Using deep-learning techniques, the system has been fed thousands of daylight and infrared satellite images taken in different conditions at different times of the day. The Fast Targeting algorithms have learned how to match images with the target area despite various geometric and radiometric distortions, allowing a 3D model of the target to be built much faster. The idea is to make such weapons much more flexible and pave the way for them to be used against time-sensitive targets. Lucas says such technologies will help address the issues associated with combat mass, dealing with the challenge of fewer platforms, so the same weapons will have to be adaptable for different missions and targets. “In recent conflicts in Libya and Syria, weapons could not be used to their full effectiveness, because they were too powerful, and there was a risk of collateral damage,” says Lucas. Operators will be able to program future weapons to scale the warhead's effects up or down to deal with different targets and environments, he suggests. Other projects in the MCM-ITP are developing lethality models for different types of targets, including aircraft, ships and structures. Replacing metal parts in warheads with reactive materials could result in more efficient and increased lethality, and if combined with additive manufacturing techniques warhead costs could also be reduced, say engineers. Additive manufacturing processes could lead to new designs for penetrator warheads in particular. Engineers from MBDA and SMEs Impetus Afea and Fluid Gravity Engineering have developed a 3D penetrator warhead case with a smaller mass than the thick casings usually produced through casting. Using the 3D-printed case means less energy is lost during warhead detonation than with the older cast penetrator. Testing has proved the 3D-printed casing can match the survivability of the thicker casing, and reduced collateral effects can also be achieved, MBDA says. The company is now looking to evolve the MCM-ITP to deal with new technologies that may cut across the eight domains of research, with the addition of a new ninth, open-challenge domain that will be more flexible for future program needs. A name change is also in the offing, with MCM-ITP being renamed the Complex Weapons Innovation and Technology Partnership (CW-ITP) from early next year. https://aviationweek.com/defense/european-missile-research-paves-way-collaborative-weaponry
August 1, 2018 | International, Naval
By: Ben Werner The Navy has exercised options adding several million dollars to the future guided-missile frigate (FFG(X)) conceptual design work being performed by five shipbuilders in contention for the final hull design. The Navy expects bids from the following shipbuilders – Austal USA, Huntington Ingalls Industries, General Dynamics Bath Iron Works, Lockheed Martin and Fincantieri Marinette Marine. A final request for proposal is expected in 2019, with the Navy planning to award a single source design and construction contract in 2020, according to the Navy. Ultimately, the Navy plans to build a fleet of 20 frigates Each company was awarded initial contracts of $15 million in February to start design work. The latest contract modification, announced Monday, sends between $6.4 million and $8 million in additional funding to each company to be used fleshing out their designs. “Each company is maturing their proposed ship design to meet the FFG(X) System Specification. The Conceptual Design effort will inform the final specifications that will be used for the Detail Design and Construction Request for Proposal that will deliver the required capability for FFG(X),” Alan Baribeau, a Naval Sea Systems Command spokesman, said in an email to USNI News. Each design for the future frigate competition is based on existing designs the shipbuilders are already producing. The Navy expects to spend between $800 million and $950 million on each hull, which will follow the Littoral Combat Ship. In terms of combat and communications systems, the Navy plans to use what is already deployed on LCS platforms. USNI News understands the new frigates will use the COMBATSS-21 Combat Management System, which uses software from the same common source library as the Aegis Combat System on large surface combatants. Missile systems for the frigate include the canister-launched over-the-horizon missile; the surface-to-surface Longbow Hellfire missile; the Mk53 Nulka decoy launching system and the Surface Electron Warfare Improvement Program (SEWIP) Block 2 program with SLQ-32(V)6. The ships would also require an unspecified number of vertical launch cells. The frigate design also is expected to include the SeaRAM anti-ship missile defense system and several undersea warfare tools. The complete list of companies awarded contract options on their respective contracts include: Austal USA LLC (Austal), Mobile, Alabama – $6,399,053; initial contract award – $14,999,969 General Dynamics Bath Iron Works, Bath, Maine – $7,950,000; initial contract award – $14,950,000 Huntington Ingalls Inc., Pascagoula, Mississippi – $7,997,406; initial contract award – $14,999,924 Lockheed Martin Inc., Baltimore, Maryland – $6,972,741; initial contract award – $14,999,889 Marinette Marine Corp., doing business as Fincantieri Marinette Marine, Marinette, Wisconsin – $7,982,991 initial contract award – $14,994,626 https://news.usni.org/2018/07/31/35430