Back to news

January 9, 2024 | International, C4ISR

Seeking 75 ships ready for combat, Navy turns to new readiness orgs

The fleet, struggling to reach its goal of 75 mission capable surface ships, is looking beyond the basics of ship maintenance for ways to boost readiness.

https://www.defensenews.com/naval/2024/01/09/seeking-75-ready-ships-navy-turns-to-new-readiness-orgs/

On the same subject

  • US Navy selects builder for new MQ-25 Stingray aerial refueling drone

    August 31, 2018 | International, Aerospace, Naval

    US Navy selects builder for new MQ-25 Stingray aerial refueling drone

    By: Valerie Insinna and David B. Larter WASHINGTON — Boeing has seized the Navy's MQ-25 tanker drone contract, a major victory for a company that has in recent years struggled to win combat aircraft awards, marking a major step toward a new kind of carrier air wing. The $805 million contract covers the design, development, fabrication, test and delivery of four Stingray aircraft, a program the service expects will cost about $13 billion overall for 72 aircraft, said Navy acquisition boss James Geurts. The award to Boeing kicks off what the Navy would is aiming to be a six-year development effort moving toward a 2024 declaration of initial operational capability. At the end, it will mark a historic integration of drones into the Navy's carrier air wing. The Navy has traversed a long and complicated road in trying to develop a UAS that would fly on and off its aircraft carriers. It first envisioned UCLASS as a surveillance and strike asset, but the program was cancelled in 2016 after stakeholders including the Navy, the office of the secretary of defense and Congress publicly butted heads over the requirements. Instead, the effort to field a carrier drone was reborn that year as an unmanned tanker that could double the range of the carrier air wing. “I think we'll look back on this day and recognize it as a pretty historic event,” said Chief of Naval Operations Adm. John Richardson. “From an operational standpoint we are putting our feet in the water in a big way of integrating unmanned with manned into the air wing,” adding that getting the Stingray into the fleet will free up the Hornets now dedicated to the tanking mission While the MQ-25 contract would have been a massive win for any of the competitors, which also included Lockheed Martin and General Atomics, it holds special meaning for Boeing. Boeing has a long history in both naval aviation and the tanking mission, but its Phantom Works advanced technology wing has failed in recent decades to win high-stakes awards like the joint strike fighter and long-range strike bomber contracts. Today's win is a big step in toward reversing the trend. Boeing and General Atomics were widely seen as the favorites for the MQ-25 contest, with each firm offering wing-body-tail designs that were heavily influenced by the company's work in the precursor to the program, the Unmanned Carrier-Launched Airborne Surveillance and Strike effort. Full article: https://www.defensenews.com/naval/2018/08/30/us-navy-selects-builder-for-new-mq-25-stingray-aerial-refueling-drone

  • Kongsberg unit wins Italy order for shallow-water unmanned submersible

    February 12, 2024 | International, Naval

    Kongsberg unit wins Italy order for shallow-water unmanned submersible

    The order has an estimated value of $11 million (€10.2 million).

  • TNO has signed a contract with ESA to start phase 2 of TOmCAT

    July 8, 2020 | International, C4ISR

    TNO has signed a contract with ESA to start phase 2 of TOmCAT

    July 2, 2020 - TNO has signed a contract with ESA to demonstrate cutting-edge optical communication technologies for future terabit-per-second telecom satellites. The TOmCAT project (Terabit Optical Communication Adaptive Terminal) will enable high-throughput laser communication between ground stations and satellites. This project is Phase 2 of TOmCAT, which started in 2017. It brings together key players in the Space and High-Tech industries, including: TNO, Airbus Defence & Space Netherlands, FSO Instruments (consortium partner Demcon), Hittech Multin (NL), Celestia-STS (NL), MPB Communications (CA), Airbus DS SAS (FR) and Eutelsat (FR), SES (LU). TOmCAT is a co-funded activity in which TNO, the companies involved, the Canadian Space Agency and the Netherlands Space Office invest through the ESAs ARTES Strategic Programme Line ScyLight. Key technologies include high-bandwidth adaptive optics, thermally stable opto-mechanics, high-power photonics, and high-throughput optical transceivers. TNO Space aims to enable secure broadband connectivity that will support the growing demand for data and increase communication efficiency. We also help stimulate economic growth in the Netherlands and Europe by enabling companies to realise new products, generate new business and improve their competitive position. TOmCAT is one example of these goals in practice. HOW DOES TNO CONTRIBUTE TO TOMCAT? TNO brings all parties together and integrates all expertise to: 1) Design the end-to-end Optical Feeder Link for high-throughput satellites. 2) Build and test cutting-edge technologies required for future Terabit Optical Ground Stations. 3) Build an end-to-end Optical Ground Terminal demonstrator and test it in a 10 km ground-to-ground link. This will show the technical feasibility of future terabit-per-second laser communication between ground and satellite terminals. TNO considers development in the TOmCAT project to be a major and important step towards the realisation of commercial Optical Ground Terminals and Optical Ground Stations for high-throughput Optical Feeder Links. Furthermore, TNO will work in the coming period, in parallel with TOmCAT phase 2, with Airbus Defence & Space Netherlands on business development and, in collaboration, position Airbus DS NL as future Original Equipment Manufacturer (OEMer) of these Optical Ground Terminals and Optical Ground Stations. TECHNOLOGY AND APPLICATION TOmCAT is a technology development project with the end goal of developing a commercial optical ground station product. With high-data-rate laser links, this ground station can communicate with the next generation of Very High Throughput Satellites. One of the innovative elements of TOmCAT is its ability to pre-correct the laser light with adaptive optics. When light moves between the surface of the Earth and space, it gets distorted due to the fluctuations in the atmosphere. TOmCAT measures the distortion of the received laser light from the satellite, and by applying the inverse of this distortion to the transmitted light, a robust communication link can be established. In order to enable this, high speed adaptive optics is required. An important objective for the project is to build a demonstrator to test and prove this concept. View source version on TNO: https://www.tno.nl/en/about-tno/news/2020/7/tno-has-signed-a-contract-with-esa-to-start-phase-2-of-tomcat/

All news