Back to news

January 2, 2019 | International, Land

SAIC Strikes Out On Mobile Protected Firepower, Plans To Remain In Combat Vehicle Market

Even though SAIC [SAIC] was eliminated from the Army's new light tank program, the company's second major vehicle loss in the last year, the company will continue exploring combat vehicle opportunities, according to a company spokeswoman.Lauren Presti said...

http://www.defensedaily.com/saic-strikes-mobile-protected-firepower-plans-remain-combat-vehicle-market

On the same subject

  • Losing Market Share And Damaging National Security Due To Anachronistic Drone Policy

    June 10, 2020 | International, Aerospace

    Losing Market Share And Damaging National Security Due To Anachronistic Drone Policy

    Dave Deptula Contributor Adherence to an obsolescent approach to the international nuclear non-proliferation export guidelines of the Missile Technology Control Regime (MTCR) is hurting the United States (U.S.) both commercially and from a national security perspective. In a nutshell, the MTCR treats large drones as if they were nuclear missiles—which they are not. As a result, this self-imposed restriction not only limits the sale of large U.S. drones to our friends and allies but pushes them into the arms of foreign suppliers some of whom are potential adversaries. The result is a series of negative consequences for the U.S. When the Stockholm International Peace Research Institute released its annual report on global arms transfers earlier this year, it was a good news story for the U.S. From 2015-2019, the U.S. accounted for 36 percent of major global arms sales, a 23 percent increase in volume over the previous five-year period and 76 percent more than its next closest competitor—Russia. The dominant position the U.S. finds itself in is a testament to both the quality of U.S. defense equipment, which is typically accompanied by robust training, sustainment, and support packages, as well as the mutual desire of the U.S. and its partners and allies to develop and maintain strong defense relationships. However, one important segment of the defense market where this pattern does not hold are large military unmanned aerial vehicles (UAV). This is not due to a lack of capability—the U.S. remains the world's leader in UAV technology and expertise—nor a lack of demand as by 2029 the international market will account for over 50 percent of the over $10 billion projected to be spent annually on UAVs. Instead, the U.S. has hamstrung itself due to restrictive export policies that equate large UAVs to nuclear missiles. This mismatch between the definitions and controls imposed on UAVs and the reality of how they are actually employed has significantly harmed coalition operations, U.S. relationships with its partners and allies, and the U.S. defense industrial base. It is imperative that the U.S. modernize its UAV export policy. Currently, the MTCR governs the export of U.S. UAVs. Initially formed in 1987, the MTCR is a voluntary agreement intended to limit the proliferation of missiles capable of delivering nuclear weapons—and later weapons of mass destruction (WMD). The MTCR defines UAVs capable of delivering a 500-kilogram payload more than 300 kilometers one way as Category I systems, the transfer of which “are subject to an unconditional strong presumption of denial.” Although at the time the MTCR was negotiated no UAV exceeded the Category I thresholds, their envisioned use as delivery vehicles for WMD equivalent to cruise missiles precipitated their inclusion in the MTCR. However, since then the development of UAVs evolved as remotely piloted aircraft, not cruise missiles. Unfortunately, export policy has failed to keep pace, resulting in a situation where the export of UAVs is regulated under the same stringent regime as intercontinental ballistic missiles. The U.S. policy failure to adequately remedy this situation creates significant problems for the following reasons. First, current U.S. export policy prevents the U.S. from realizing the full potential of UAVs in coalition operations. Because current policy frequently results in the denial of export requests for U.S. UAVs by close partners and allies, these nations must either resort to indigenous production or to another foreign manufacturer to meet their military requirements. Under the best of circumstances, the result is a lower level of interoperability with U.S. forces than possible had they been able to acquire U.S. UAVs. This hampers the integration of partners that would enable the coalition to be much more effective. The current policy impedes the use of common UAVs critical for success in allied operations. Of greater concern is that much of the unmet demand by friends for U.S. military UAVs is now being fulfilled by China because of the MTCR restrictions. Integrating partners into coalition operations using Chinese UAVs creates significant security risks. This is because China maintains control of the systems necessary to operate their UAVs. This enables them to collect intelligence on coalition operations if allowed access to coalition networks. From the perspective of a U.S. commander, the risk these likely infiltrations pose to security is sufficient to exclude partners operating Chinese UAVs from participating in both U.S. led coalition operations and intelligence sharing agreements. Second, the U.S. denying UAV export requests from nations that are security partners fosters frustration, raises doubts about U.S. commitments, and drive partners to pursue security relationships with China. Jordan, Iraq, Saudi Arabia, and the United Arab Emirates provide recent examples of solid U.S. partners that have procured Chinese UAVs. Furthermore, these countries are then forced to rely on China for training, sustainment, intelligence processing, and other related services. China's willingness to integrate indigenous industry in joint ventures—another practice restricted by the MTCR—serves to further solidify the ties between China and the partnering nation. Absent a change in U.S. policy, China will continue to expand its UAV market share and associated influence into regions important to the U.S. Third, the associated U.S. loss of global market share of UAV sales weakens U.S. business and the U.S. defense industrial base. Domestic funding for certain UAVs already faced downward pressure in the most recent budget request amidst other modernization priorities. Looking ahead the enormous federal expenditures to address the COVID-19 pandemic and the associated economic downturn are likely to result in significant cuts to future U.S. defense budgets. Greater access to foreign markets would serve to diversify the customer base of U.S. manufacturers of large UAVs, helping to offset reduced revenue from domestic buyers and keeping commercial production lines. Unfortunately, current UAV export policy precludes this from happening. Declining production rates for large military UAVs threaten to not only to shrink the U.S. aerospace industrial base, but also to undermine its competitive edge. Lacking predictable cash flow and sufficient profit margins, companies that manage to remain in the market will become more reticent to invest significant funds into research and development. Furthermore, the MTCR prohibits co-development and co-production of UAVs, precluding U.S. drone companies from pooling resources and expertise with international partners. The danger is that the U.S. may squander its drone advantage just as international interest in procuring advanced, survivable, multi-mission UAVs ramps up. It would be a tremendous shame if the U.S. finds itself no longer in a leading position and must instead rely on others to develop cutting-edge UAV technologies. Although there is growing awareness of these problems, recent efforts to craft a more reasonable UAV export policy have largely fallen short. Rather than a fundamental shift in policy, the few positive steps taken have been stopgap measures involving workarounds—approving more Category I sales via direct commercial sales rather than foreign military sales—or maneuvering within the confines of the MTCR through attempts to modify UAV definitions such as adding a speed criteria. Instead, as is comprehensively laid out in the Mitchell Institute's most recent policy paper, what is needed is for the Congress to insert language into the 2021 National Defense Authorization Act that explicitly defines UAVs as combat aircraft and subject them to the same export considerations. This would effectively remove U.S. UAV export decisions from the MTCR guidelines. The U.S. has a proven process of adjudicating sales of the most advanced fighter aircraft in the world, including how to configure them to make sales mutually beneficial to the U.S. and its partners. The example of the F-35 is particularly pertinent because technologies approved for export on the F-35 would be restricted by the MCTR if applied to a UAV—the only difference being the pilot of the F-35 is in the aircraft whereas large UAVs are remotely piloted. Given both the high degree of commonality of combat aircraft and UAVs, as well as the proven success combat aircraft sales have in providing partners a formidable deterrent and warfighting capability, improving interoperability among coalition partners, and supporting both U.S. and partner industrial capacity, treating UAVs as combat aircraft for export policy offers the most sensible and effective solution. Change cannot come soon enough. The U.S. has a limited window to re-engage with partners with a stated interest in U.S. UAVs or who are experiencing buyer's remorse with regard to their Chinese UAV partnerships. It is therefore critical that the U.S. normalize its UAV export policy before China can consolidate its gains. The future of warfare increasingly depends on UAV technology. Exporting large U.S. UAVs is vital to effective coalition operations. For too long the MTCR has distorted the balance of national security and economic interests against the fear of nuclear and WMD proliferation. Acknowledging UAVs as what they are—aircraft, not missiles—will enhance U.S. security, improve commercial trade in a growing business sector while preserving the MTCR as an effective means to prevent the proliferation of missiles and their associated technologies. https://www.forbes.com/sites/davedeptula/2020/06/09/losing-market-share-and-damaging-national-security-due-to-anachronistic-drone-policy/#50ce76d51332

  • The Air Force tested its Advanced Battle Management System. Here’s what worked, and what didn’t.

    January 23, 2020 | International, Aerospace, C4ISR

    The Air Force tested its Advanced Battle Management System. Here’s what worked, and what didn’t.

    By: Valerie Insinna WASHINGTON — The first field test of the U.S. Air Force's experimental Advanced Battle Management System in December was a success, with about 26 out of 28 capabilities showing some semblance of functionality during a recent exercise, the service's acquisition chief said Tuesday. But the service will seek to be more ambitious during a second demonstration in April, which will focus on space and bring in elements from U.S. Space Command and U.S. Strategic Command, said Will Roper, the Air Force's assistant secretary for acquisition, technology and logistics. "I am thrilled to say that 26 out of 28 things work. That is too high of a success rate at this point in time, but I'll take it. We should be taking more risk than that,” he told reporters during a roundtable. The three-day test took place at Eglin Air Force Base, Florida, and involved a potential cruise missile attack on the United States simulated by QF-16 drones. Through the exercise, Air Force F-22 jets, Air Force and Navy F-35 fighters, the Navy destroyer Thomas Hudner, an Army unit equipped with the High Mobility Artillery Rocket System, as well as special operators shared data in real time in ways the services cannot currently do in an operational environment. What will ABMS eventually look like? That's still a mystery, even to the Air Force, which wants to test different solutions for connecting platforms, crunching data and sending it to other assets with the goal of eventually fielding what works and abandoning what doesn't. “We gave the team the goals of: Pull what you can together in three and a half months to see how far we can stretch, how quickly we could achieve something,” said Air Force chief architect Preston Dunlap, who manages the ABMS effort. “We were quite happy actually, even with 10 percent solutions.” Here's a rundown of some notable successes so far, as well as major failures: The F-35 and F-22 were able to stealthily exchange data. Despite the two jets having advanced “sensor fusion” capabilities, the Air Force's two most advanced fighters can't really talk to each other. The F-35 uses the Multifunction Advanced Data Link, or MADL, to securely share sensitive information with other F-35s, while the F-22 has its own data link, the Intra-Flight Data Link, or IFDL. Even using a non-stealthy connection to share information has its limitations: While the F-35 can both transmit and receive data via the Link 16, which meets NATO standards, the F-22 currently can only receive data. However, the first ABMS test showed hopeful signs for fifth-generation fighter communication. The demonstration involved radio systems — built by F-35 prime contractor Lockheed Martin as well as Northrop Grumman, which manufactures key structures and mission systems for the aircraft, including MADL, Dunlap said. The demo also included Honeywell-made antennas built to speak across both MADL and IFDL, he added. Those systems were integrated onto a ground based rig that “look[ed] like a big piece of hardware with radios on it,” according to Roper. Then, the F-35 and F-22 flew over the system, exchanging data by bouncing it back-and-forth from the ground-based radios, Dunlap said. He noted that the test verified that existing technology can be used to overcome three obstacles: translating the F-35's MADL to the F-22's IFDL; moving data across the different frequencies; and securing the communication. "It was really herculean,” Dunlap said. "[The contractors] were excited by the speed of the acquisition team to get the ball going." During the next ABMS demo in April, the Air Force plans to stretch the capability by putting the translation system inside the unmanned Kratos XQ-58 Valkyrie for flight-based testing. “I also challenged the team to expand the amount of information translated between the different platforms so they can take advantage of new information on the displays,” Dunlap said. An AC-130 gunship connected with SpaceX's Starlink constellation. Although Dunlap did not provide much detail on this element of the exercise, he confirmed that the AC-130 was able to pass data through the constellation of small, high-bandwidth commercial internet satellites. The Air Force has shown interest in connecting its platforms to commercial broadband satellites through its Global Lightning experiment. A demonstration with Starlink and the KC-135 tanker aircraft is in the works, and the service also plans to evaluate equipment from Iridium, OneWeb and L3Harris. The Air Force created a cloud-based application for command and control. Typically, the service performs command and control from air operations centers — physical buildings where analysts sit in front of computers with specialized software that provides data from multiple assets, Dunlap said. Changes to software don't necessarily happen automatically, and they may require assistance from information technology experts. In the ABMS exercise, the Air Force demonstrated a cloud-based battle management and situational awareness application for the first time. It used a “CloudOne” system to host data up to the secret level, which will be a formative system underlying ABMS, Dunlap said. Both Amazon and Microsoft are involved in standing up the CloudOne technology, but Roper said the Air Force could use the Joint Enterprise Defense Infrastructure contract vehicle for CloudOne if JEDI winner Microsoft provides better rates. The robot dogs were a swing and a miss. U.S. Special Operations Command brought the robots that are capable of augmenting surveillance operations to the ABMS field test, but operators couldn't figure out how to connect them with the other platforms involved in the exercise. “We had some robot dogs — apparently those exist — that can go and do patrol. We were never able to patch their feeds in,” Roper said. There's hope for cybernetic canines becoming part of ABMS in the future though. Roper added that the ABMS team would be welcome to try to integrate the robots in future exercises. https://www.c4isrnet.com/air/2020/01/22/the-us-air-force-tested-its-advanced-battle-management-system-heres-what-worked-and-what-didnt/

  • Editorial: Why Coronavirus Cannot Kill Aviation

    March 23, 2020 | International, Aerospace

    Editorial: Why Coronavirus Cannot Kill Aviation

    Not long ago, the biggest concern facing commercial aviation was whether Airbus and Boeing could produce enough aircraft to keep up with demand. Industry leaders fretted about how quickly they could ramp up production and whether the supply chain could keep pace. Some airlines were equally bullish, with American Airlines CEO Doug Parker proclaiming: “I don't think we're ever going to lose money again.” After a run of unparalleled and seemingly unstoppable prosperity, aviation and aerospace have flown into a perfect storm. The temporary shutdown of Boeing's 737 MAX production line has waylaid aerospace suppliers. But that pales in comparison to the impact of the coronavirus pandemic, which first crippled a crucial growth engine, China, and is now decimating air transport markets around the world. Each day brings a new round of fleet groundings, layoffs and order deferrals or cancellations, which in the coming months will rip through the manufacturing industry like a tornado. A new forecast from Europe projects Airbus will be forced to cut planned production nearly in half in 2021 and may not fully recover before 2027. Boeing is calling on the U.S. government to provide at least $60 billion in aid to aerospace manufacturers, U.S. airlines want another $58 billion, airports $10 billion and the maintenance, repair and overhaul industry $11 billion. It would not be hyperbole to call this the greatest crisis civil aviation has faced since the dawn of the commercial jet age more than six decades ago. But amid such panic, we need to take a deep breath and remember that this industry has survived many big challenges: oil price spikes; the Sept. 11, 2001, terrorist attacks; the Severe Acute Respiratory Syndrome; and the 2008-09 global financial meltdown. Each time commercial aviation has recovered and grown stronger, resuming its long-held trend of outpacing global economic growth. In one way, the disruption to our lives and businesses caused by the travel restrictions imposed to control the spread of COVID-19 illustrates the degree to which the world has come to rely on air transportation, from enabling commerce to connecting families. This is a crisis on an unprecedented scale for aviation, and there are airlines and businesses that certainly will not survive. But the extent of the disruption gives hope that demand for air transportation will return unabated once the restrictions are lifted. It is vital for governments, lawmakers and industry leaders to recognize that aviation will need help getting through such destructive upheaval. But in some cases, the optics will invite legitimate criticism. For example, Boeing has returned nearly $50 billion to its shareholders over the past five years while investing far less. Now it wants taxpayers to cough up tens of billions for a bailout? U.S. airlines are no better: They have sent 96% of free cash flow to shareholders over the last five years. And what about those airlines in Europe that should have been allowed to die long ago? Will they use this crisis as leverage for yet another government rescue? Clearly, there are lessons to be learned from the crisis, and a return to business as usual will not suffice. But in the near term, this is not about partisan politics or competitive advantage. It is about helping a vital industry survive this calamity. Commercial aviation is a connective tissue that underpins global commerce, drives prosperity and supports many millions of jobs. Allowing it to wither is not a realistic option. The coming days will be dark, but rest assured the industry will recover and once again prosper. https://aviationweek.com/aerospace/editorial-why-coronavirus-cannot-kill-aviation

All news