Back to news

December 5, 2019 | International, Aerospace

No F-35 For You: The French Air Force's New Rafale Fighter Won't Be Stealthy

by Sebastien Roblin

Key point: Paris wants new planes, but it has no plans to build or buy its own stealth fighters.

In January 2019, French Defense Minister Florence Parly announced France would commit $2.3 billion to develop an F4 generation of the Dassault Rafale twin-engine multirole fighter. This would include production in 2022–2024 of the last twenty-eight of the original order of 180 Rafales, followed by the purchase of an additional thirty Rafales F4.2s between 2027–2030, for a total of 210. Since 2008, France has deployed land- and carrier-based Rafales into combat in Afghanistan, Iraq, Libya, Mali and Syria.

In January 2019, French Defense Minister Florence Parly announced France would commit $2.3 billion to develop an F4 generation of the Dassault Rafale twin-engine multirole fighter. This would include production in 2022–2024 of the last twenty-eight of the original order of 180 Rafales, followed by the purchase of an additional thirty Rafales F4.2s between 2027–2030, for a total of 210. Since 2008, France has deployed land- and carrier-based Rafales into combat in Afghanistan, Iraq, Libya, Mali and Syria.

The Rafale is much more agile than the F-35, with superior climb rate, sustained turn performance, and ability to super-cruise (maintain supersonic flight without using fuel-gulping afterburners) at Mach 1.4 while carrying weapons. The Rafale's all-moving canards—a second set of small wings near the nose—give the Rafale excellent lift and low-altitude speed and performance, as you can see in this majestic airshow display.

However, compared to larger fourth-generation twin-engine jets like the Su-35 or F-15, the Rafale can't fly quite as high (service-ceiling of 50,000 instead of 60,000 ft), and has a lower maximum speed (only Mach 1.8 compared to Mach 2-2.5).

The Rafale's agility won't help as much if it is engaged at long distances by enemy surface-to-air missiles and stealth jets. To compensate, the Rafale boasts an advanced Spectra electronic warfare system that supposedly can reduce the Rafale's cross-section several times over—it is rumored by reflecting back signals using ‘active canceling.' Spectra also incorporates powerful jammers and flare and chaff dispensers, provides 360-degree early-warning, and can even assist Rafale pilots in targeting weapons to retaliate against attackers.

Spectra's capabilities reportedly allowed Rafales to deploy on raids over Libyan airspace in 2011 before air defense missiles had been knocked out.

Other key capabilities include sensor fusion of the Rafale's RBE-2AA Active Electronically Scanned Array multi-mode radar, which can track numerous targets over 124 miles away, with its discrete OSF infrared-search and track system, which has an unusually long range of sixty-two miles. Rafale pilots also benefit from uncluttered instrumentation combining voice command with flat-panel touch screens.

The multirole jet carries a punchy thirty-millimeter revolver cannon and up to twenty-one thousand pounds of weapons on fourteen hardpoints, making it a versatile air-to-ground platform. Because Paris requires expeditionary capability in Africa, the Rafale can refuel in flight and carry up to five fuel tanks for very long transits, and can be operated from relatively unprepared airfields, unlike most high-performance jets.

What's new in the Rafale F4?

Dassault produces three basic types of Rafales: the single-seat Rafale-C, the two-seat Rafale-B (the additional weapon systems officer being preferred for strike and reconnaissance missions) and the carrier-based single-seat Rafale-M, which has an arrestor hook, reinforced landing gear and buddy-refueling pod capability. Each type has evolved in common generations designated F1, F2, F3 and F3R.

The F4 generation introduces additional network-centric warfare capabilities and data-logistics similar to those on the F-35 Lightning, enabling Rafales on patrol to build a more accurate picture of the battlespace by pooling their sensors over a secure network, and even exchange data using new satellite communications antenna. The pilots also benefit from improved helmet-mounted displays.

The Spectra defensive system will receive more powerful jammers and new threat libraries tailored to meet the improving capabilities of potential adversaries. Furthermore, Dassault seeks to use “Big Data” technology to develop a predictive maintenance system reminiscent of the F-35's troubled ALIS system to cost-efficiently implement preventative repairs.

Other systems to be tweaked include the air-to-ground mode of the RBE-2AA radar, the M88 turbofan's digital computers, and a new AI-system for its reconnaissance and targeting pod allowing it to rapidly analyze and present information to the pilot. Rafale-Ms will also receive a new automated carrier landing system.

New weapons set for integration most notably an improved model of the Mica short-to-medium range air-to-air missile, which has a range of forty-nine miles. The Mica can be launched without initially being locked and guided remotely by a data link on the fighter before engaging either an infrared or AESA radar seeker to close in for the kill, using a vector-thrust motor to pull off tight maneuvers. Because both the Rafale and the Mica missile can employ passive infrared targeting without using an indiscrete active-radar for guidance, the MICA can be launched with little warning for the target.

The Mica-NG model will incorporate new infrared-matrix sensors for better performance versus stealth fighters, carry additional propellant for longer range, and integrate internal sensors to reduce maintenance costs. Its dual pulse motor will allow it to accelerate just prior to detonation for a greater probability of achieving a kill.

For longer range engagements, newer Rafales F3Rs and F4s can launch British Meteor missiles which can sustain Mach 4 speeds.

Another weapon set for integration is heavier 2,200-pound variants of the AASM HAMMER, a guidance kit similar to the U.S. JDAM. Previously, the Rafale could only carry 485-pound variants of the weapon which can use either GPS-, laser- or -infrared guidance to deliver precise strikes. Unlike the JDAM, the HAMMER also incorporates a rocket-motor, allowing it to hit targets up to thirty-seven miles away when released at high altitude.

The Rafale will also be modified to integrate future upgrades of the French SCALP-EG stealthy subsonic cruise missile and the supersonic ASMP-A cruise missile which carries a 300-kiloton-yield nuclear warhead. Reportedly France may develop a hypersonic AS4NG variant increasing range from 300 miles to over 660 miles.

Currently, the French Armée de l'Aire has three Rafale multi-role squadrons and two nuclear-strike squadrons based in Mont-de-Marsan (south-western France), Saint-Dizier (north-eastern France) and al-Dhafra in the UAE. There are also an operational conversion unit and a testing and evaluation squadron.

The French Navy has three Rafale-M squadrons which rotate onboard France's nuclear-powered carrier Charles de Gaulle. In 2018, a squadron of Rafale-Ms proved their capability to operate from the U.S. carrier George H. W. Bush.

The forthcoming Rafale F4s will progressively replace France's fourth-generation Mirage 2000s, over 110 of which remain in service today. French periodical Le Figaro claims that older Rafales will also eventually be updated to the F4 standard.

Abroad, Dassault is finish delivery of orders from Egypt (twenty-four), Qatar (thirty-six) and India (thirty-six). All three countries may order additional Rafales, though the price of its initial Rafale order has caused a political scandal in New Delhi.

As France must wait nearly two decades before a European stealth fighter can enter service, its armed forces are betting that in the interim adding networked sensors and weapons to the Rafale's superior kinematic performance and powerful electronic warfare systems will keep the agile jet relevant in an era of proliferating stealth aircraft and long-range surface-to-air missiles.

Sébastien Roblin holds a master's degree in conflict resolution from Georgetown University and served as a university instructor for the Peace Corps in China. He has also worked in education, editing, and refugee resettlement in France and the United States. He currently writes on security and military history for War Is Boring. This first appeared early in June 2018.

https://nationalinterest.org/blog/buzz/no-f-35-you-french-air-forces-new-rafale-fighter-wont-be-stealthy-101722

On the same subject

  • ‘Drone swarms’ are coming, and they are the future of wars in the air

    February 3, 2021 | International, Aerospace

    ‘Drone swarms’ are coming, and they are the future of wars in the air

    The question really is not if, but when and where drone swarms, which is the next evolution of robotic warfare, will be utilised in real-time operations. SAMEER JOSHI In early January 2018, Russian operators manning the extensive air defence network at Russia's Khmeimim airbase in western Syria spotted 13 incoming drones at low level. As the Russian air defence operators engaged these drones with EW & SHORAD systems, it was clear to the Russians that they were witnessing a new genre of a collaborative drone attack. The Russians shot down seven drones and jammed the remaining six in the nick of time. While the Islamic State and Afghan Taliban have used drones to deliver ad hoc explosive payloads, the failed attack on Khmeimim that evening was disturbing to close observers of drone warfare as the first recorded instance of a mass-drone attack by non-state actors in a combat operation. More drone attacks happened on the Russian facilities in Syria all through 2018, 2019 and 2020, with over 150 drones disabled by Russian AD in Syria till date. On 14 September 2019, 25 massed drones in two waves attacked the state-owned Saudi Aramco oil processing facilities at Abqaiq and Khurais. Analysis of satellite images of the Abqaiq facility before and after the attacks showed 19 individual strikes. What was noteworthy was that the Saudi air defence, including the potent MIM-104 Patriot and Crotale NGs failed to stop these waves of drones and cruise missiles. This demonstrates how a group of drones and cruise missiles coming from multiple directions can escape undetected for long and overwhelm conventional air defences. Switch to the unmanned While the US and Israel have extensively used drones in varied operational roles over the years, a glimpse of how warfare would evolve in future with use of unmanned air vehicles was truly highlighted by Turkey in Syria and Libya, and by Azerbaijan against Armenia in the Nagorno-Karabakh war in 2020. The coordinated usage of armed drones and loitering munition against tanks and air defence systems via electronic networks was very effective. This was especially showcased in the Azerbaijani strikes to knock down Armenian S-300 and SHORAD networks, as well as 200 plus military vehicles in the tactical battlefield area (TBA). This engagement is an order of magnitude higher from similar Russian use of unmanned aerial vehicles (UAVs) in Ukraine from 2014 onwards, where networked UAVs working with Russian ground based offensive weapons systems were able to eliminate major Ukrainian Army columns and supply depots. With the world taking note of these milestone events where smaller nations are exhibiting advanced warfighting capabilities, the military drone use will expand rapidly, dominated by rampant induction of surveillance and attack UAVs across the globe. Here Israel, Turkey, Russia and China are providing an effective and alternate industrial base to challenge the domination of the west in proliferation of advanced drones and allied technologies. However, the drone assaults on Khmeimim AFB and Saudi oil facilities, as well as coordinated use of drones in Ukraine, Syria, Libya and Nagorno-Karabakh display early flashes of evolution in future aerial warfare towards the concept of what is known as ‘drone swarming'. In particular, the mass drone attacks on Russian forces in Syria has highlighted the rampant danger that unmanned aircraft in a group increasingly pose, even in the hands of non-state actors. Such small drone teams, collaborating together, offer a game-changing capability for not only larger nations like the United States, Russia, China and Russia, but also small nations and non-state players, who will use the drone swarms in a highly asymmetric role. Very significantly, low cost unsophisticated drones working together and aiming for target saturation through numbers, impose a high cost penalty on the air defence elements. While defences may be able to fend off a handful of these improvised drones executing a very loosely coordinated attack, a near peer-state competitor can field a much advanced, denser, more nimble, adaptable, and networked force. Demystifying drone swarming So what exactly is a drone swarm? Swarm robotics is an approach to the coordination of multiple autonomous robots as a system which consists of a large number of mostly physical robots, controlled by minimal human intervention. These exhibit collective self organising (SO) behaviour through interaction and cohesion between robots, as well as interaction of robots with the environment. Swarming algorithms are empowered by biological studies of swarm behaviour of insects, fishes, birds and animals. Swarming R&D across the world is focussed on development of distributed artificial swarm intelligence capability, commodification of technology for lesser cost impact and increasing state of autonomy between the agents in a swarm. While massed drones in spectacular light shows are all controlled centrally, in a true swarm, each of the drones flies itself following onboard AI to maintain formation and avoid collisions with algorithms mimicking nature — there is no true leader and follower, with all agents in a swarm having their own ‘mind' able to undertake collective decision-making, adaptive formation flying, and self-healing. The benefit of such a swarm is that if one drone drops out — and a few appear to crash — the group can rearrange itself to continue undertaking the mission till the last UAV in air. Over time as militaries have incorporated greater communications, training, and organisation — they were able to fight in an increasingly sophisticated manner, leveraging more advanced doctrinal forms, with each evolution superior to the previous. Today militaries predominantly conduct manoeuvre warfare. Here swarming would be the next evolution in warfare — with the swarms exhibiting the decentralised nature of melee combat, along with the mobility of manoeuvre warfare. They have varied levels of autonomy and artificial intelligence. The autonomy extends military reach into the well defended battlespace, operating with greater range and persistence than manned systems; while artificial intelligence ensures dangerous and suicidal missions, thus allowing more daring concepts of operation (CONOPs). Both provide greater success in face on increased threat levels and rapid penetration of contested airspace. This switch to the unmanned is happening all across the world. And the most preferred route for delivery of a kinetic and non-kinetic payloads is via air. Traditionally, in airpower-heavy militaries like the United States, air operations have relied on increasingly capable multi-function manned aircraft to execute critical combat and non-combat missions over the decades. However, adversarial abilities to detect and engage these aircraft from longer ranges having improved are driving up the costs for vehicle design, operations and replacements. Thus an ability to send large numbers of small unmanned air systems (UASs) with coordinated and distributed capabilities, could provide militaries across the world with improved operational footprints at a much lower cost. These, embedded with manned elements, will effectively saturate adversary targets as a ‘system of systems'. Here Manned & Unmanned Teaming (MUM-T) acts as a force multiplier with autonomy and collaboration and the warfighter's role transforming to — commanding, rather than controlling a swarm. Once unleashed an armed, fully autonomous drone swarms (AFADS) with distributed AI will locate, identify, and attack targets without human intervention. While new technologies, and in particular AI and edge computing, will drive drone swarms — the key element is still going to be the swarming software. Towards this, all collective behaviour can ideally be clubbed under the term ‘swarm'. However, collaborative autonomy has ‘three' transformational echelons of behaviour — flocking, where a discernible number of UAVs execute abstract commands autonomously, but fall short of true swarm behaviour. UAVs attacking the Russians AFB in Syria and the Saudi oilfields utilised this echelon. Swarming, where a large numbers of UAVs aggregate entirely through swarming algorithms in real time and is the highest state of collaborative autonomy. Loyal Wingman utilise the collaborative autonomy either through emergent flocking or core swarming behaviour. These platforms will operate in MUM-T mode, flying at high speeds alongside fighter jets and carrying missiles, ISR and EW payloads. The Loyal Wingman will be expected to target ground installations and shoot down enemy aircraft, as well as survive against SAMs and electronic attacks in contested airspace. Military swarming in the US The United States is the world leader in swarm technology and has underway a host of swarming UAV and munition initiatives. It demonstrated the Perdix swarm in 2017. A trio of F/A-18 Super Hornet fighters release a total of 103 Perdix drones in air. The drones formed up at a preselected point and then headed out to perform four different missions. Three of the missions involved hovering over a target while the fourth mission involved forming a 100-meter-wide circle in the sky. The demo showed Perdix's collective distributed intelligence, adaptive formation flying, and self-healing abilities. There are a many uses for such a drone swarm. The drones could be released by fighters to provide reconnaissance for troops on the ground, hunting enemy forces and reporting their location. They could also jam enemy communications, form a wide-area flying communications network, or provide persistent surveillance of a particular area. They could be loaded with small explosive charges and attack individual enemy soldiers. In air-to-air combat, they could spoof enemy radars on aircraft, ground vehicles, and missiles by pretending to be much larger targets. The US Defense Advanced Research Projects Agency (DARPA) has also showcased the X-61A Gremlin air launched drones. The idea behind DARPA's Gremlins program is to turn cargo aircraft like the C-130 into motherships capable of launching and retrieving swarms of small drones. This would open up a world of possibilities to the military, allowing deployment of swarms of small, inexpensive, reusable drones with different sensors and payloads from legacy aircraft. The US Navy and Marine Corps' Low-Cost UAV Swarming Technology (LOCUST) program, which fires small UAVs from a tube-based launcher to conduct varied class of missions, is another swarm development underway. The US Army is also working on drone swarms and Reinforcement Learning (RL)-based AI algorithms for use in tactical battlefield area in multi-domain battle scenario, where swarms will be dynamically coupled and coordinated with heterogeneous mobile platforms to overmatch enemy capabilities. The US is also experimenting with collaborative smart munition delivery using the Cluster UAS Smart Munition for Missile Deployment where the payload can be launched and deployed from a GMLRS or ATACMS platform. The payload consists of multiple deployable smart UAVs capable of delivering small explosively formed penetrators (EFP) to designated targets. The USAF's Golden Horde — part of the Vanguard initiative to develop next generation offensive technologies — will network munitions like Small Diameter Bombs (SDB) together to operate cooperatively after being launched according to a set of predetermined rules and thus increase effectiveness. Further, the USAF's ‘Skyborg' initiative aims to design and deploy an artificially intelligent fleet of loyal wingman unmanned combat air vehicles (UCAV). The Kratos XQ-58A, the Sierra 5GAT and Boeing's ATS are undergoing development trials as part of Skyborg. Military swarming across the world On the other hand, the UK may have the world's first operational swarm drone unit by the middle of 2021 to perform tasks including suicide missions inside enemy lines and overwhelming adversary air defences. The Royal Air Force's №216 squadron has been tasked to test and deploy future drone swarm capability. The UK has also announced the Project Mosquito, which is a part of the RAF's Lightweight Affordable Novel Combat Aircraft (LANCA) unmanned loyal wingman program. This aims to fly a networked unmanned wingman by 2023. UK has also tested an autonomous swarm of drones each carrying a variant of Leonardo's BriteCloud expendable active decoy as an electronic warfare payload. Using the BriteClouds, which contain electronic warfare jammers, the drones were able to launch a mock non-kinetic attack on radars acting as surrogates for a notional enemy integrated air defence network Airbus in France has demonstrated for the first time collaborative remote carrier (RC) swarms and wingman technology towards the Future Combat Air System (FCAS)/Systeme de Combat Arien du Futur (SCAF) program. The Russians have had an extensive experience operating collaborative drones and countering the same in Ukraine and Syria. The last decade has upscaled UAV efforts in Russia and it aims to induct a large component of robotic vehicles in its military by 2025. It has an initiative called the ‘Flock 93' which aims to operationalise a high density swam in coordinated saturation strike missions. Originally proposed by the Zhukovsky Air Force Academy and private industry, the concept involves simultaneously launching more than a 100 drones, each armed with a 5.5 pound warhead. The Russians have also tested the S-70 Okhotnik UCAV in loyal wingman roles with its fighter jet fleet to penetrate adversary airspace. A lighter loyal wingman project with the designation Grom has also been unveiled by Russia in 2020. The Russians are aware of the lead in swarm autonomy which the US and China have, and are engaged in R&D and product development initiatives to close the gap in these niche areas in the coming decade. The Chinese are the closest in matching the high density drone swarm capability of the United States and in many ways are replicating the US R&D initiatives with development of AI empowered autonomous drone swarms. Recently The China Academy of Electronics and Information Technology (CAEIT) tested a 48 x tube launched drone swarm of CH-901 UAVs. CAEIT in the past has demonstrated a 200 unit drone military swarm in 2017. Chinese companies have also demonstrated impressive swarms of 1,000 plus drones using quad-copter-type drones for large public displays, which however are ground controlled and do not have distributed intelligence. The Chinese are undertaking integration of their existing UAV fleet in a robust collaborative autonomy role with the military. It also has a loyal wingman AVIC 601-S ‘Anjian' under development, which will operate with the fourth and fifth generation PLAAF fighters platforms. Whatever the goals and state of China's drone swarms developments are, its capability and potential threats are definitely real and rapidly evolving at a fast rate. Other nations developing swarm technology are Israel, where details on such initiatives are closely guarded. However, given the nature of Israeli operational UAV usage over the years, there are reasons to believe that it matured and has been deployed on its fleet of UAVs and loiter munitions, some of which have been proven by disabling Syrian AD networks. Interestingly, IAI offers a smartphone-based swarming command and control application for worldwide sales. Turkey, which has proven mature MALE UAV capabilities in Syria and Libya through locally made platforms like the TB-2, also has various swarm drone initiatives. Primary amongst them is the Kargu quadcopter which can be employed in kinetic attack roles in the tactical battlefield area. Turkey is vying to be a global UAV power in the days to come. However, the recent US sanctions on its defence industry is likely to curtail high technology induction from the West. Iran is another middle eastern nation which has used drones in groups operationally. Iran has embraced unmanned aerial vehicles (UAVs) as a major pillar of its military strategy. Iranian authorities use drones for two main purposes — surveillance and attack, where Iran has the ability to conduct missions over the horizon and in most weather conditions. These include drones with the ability to drop bombs or launch missiles and return to base and ‘kamikaze' drones that seek targets of opportunity. Iranian authorities have had more success with the latter as was visible in the Saudi oilfield strikes in 2019, where Iranian made drones and cruise missiles were used. While baseline collaborative autonomy in terms of vehicle flocking may be available, both Iran and Turkey have not shown true distributed intelligence ability amongst their UAV swarms. But their efforts are a clear indication of how the technology is maturing and proliferating. India's swarm drone odyssey In India, the Indian Air Force has been pioneering swarm drone research and development with its Meher Baba initiative since 2019. This is geared towards in depth humanitarian assistance and disaster relief (HADR) operations. On the other edge of the spectrum, the Indian Army showed off a mature offensive capability with a swarm of 75 autonomous drones with distributed intelligence and edge computing, destroying a variety of simulated targets with kamikaze attacks during India's Army Day parade in New Delhi in January 2021. In the demo, scout drones investigated the targets, then attack and mothership drones released payloads and explosive-laden kamikaze drones, which carried out the attacks. Western commentators noted several significant features of the Indian Army demonstration comparing it to the United States effort around drones, which often emphasises a large homogenous swarm. It was pointed out that India's original work, which showcased a heterogenous swarm effort for the first time in the world in public — as the probable way forward in this domain. An Indian Start-up company NewSpace Research & Technologies is associated with the Indian Army on its swarm development program. The Hindustan Aeronautics Limited (HAL) in India has unveiled the Air Launched Flexible Asset (ALFA -S) air launched swarming drone system as part of it next generation Combat Air Teaming System (CATS). This is a unique program which utilises a network of air launched remote carriers and swarming units to penetrate contested airspace. The USAF's Air Force Research Labs is collaborating on aspects of the ALFA-S with India. NewSpace Research & Technologies Pvt Ltd is also a partner in the HAL's ALFA initiative. Another component of HAL's CATS program is the Warrior loyal wingman asset. This is geared for air defence and offensive strike missions and will be employed in a MUM-T role with India's Tejas LCA and the upcoming AMCA fifth generation combat aircraft. What is noteworthy is that India is well driven by the power of indigenous research and the government's ‘Make in India' push to embrace disruptive technologies, which in some areas is at par with similar efforts happening across the world. HAL has unveiled the first 1:1 mock up of the Warrior in AeroIndia 2021 at Bengaluru. The future is now It is pertinent to note that while drone swarms may not be ready as an end state ‘product', proliferation of basic swarming technology is inevitable in the coming decade across the world. Here advances in drone swarming, which is the next evolution of robotic warfare are mostly classified, though governments have given glimpses of their progress over the years. The question is not if, but when and where drone swarms will be utilised as part of a mature concept of operations (ConOps). Swarming ConOps, a red herring for most nations, can only be matured with clinical and robust field trials utilising hundreds of heterogenous swarming units. It is this ‘scale and associated cost' borne by the end user which will determine a dynamic adoption, meaningful way ahead towards operationalisation and acceptable timelines of induction towards exploited usage of swarms as true agents of warfare. It is here that countries like the United States and China have a distinct advantage over the rest of the world towards deployment of swarm drone capabilities across the spectrum of missions, at a scale which will tilt the balance in their favour in the digitally contested airspace of tomorrow. Sameer Joshi is a retired Indian Air Force fighter pilot with experience on the MiG-21 and Mirage-2000 jets. Besides being a start-up entrepreneur, he has serious interests in aerospace & defence and military history. https://theprint.in/defence/drone-swarms-are-coming-and-they-are-the-future-of-wars-in-the-air/596842/

  • What reduced size, weight and power mean on the battlefield

    August 22, 2018 | International, C4ISR

    What reduced size, weight and power mean on the battlefield

    Computers on the battlefield take a beating. Beyond the everyday wear and tear, they also must endure extreme temperatures and often violent vibrations. To help ensure its systems give soldiers and commanders the information they need, the Army relies on its Mounted Family of Computer Systems program. Known as MfoCS, pronounced em-fox, the program covers detachable tablets to fully-loaded, vehicle-mounted workstations. C4ISRNET spoke recently with Bill Guyan, vice president of business development for Leonardo DRS, about advances in battlefield computing. C4ISRNET: We hear a lot about a new emphasis on the hardening of security of contractors. And not just contractors, but primes, and then their contractors. Obviously this has become a point of concern for DOD leadership. Bill Guyan: One of the big areas of emphasis for the Army in the procurement of the [Mounted Family of Computer Systems] (MFoCS) and particularly MFoC2 II, were areas related to security, both from a cyber security standpoint and the ability to assure that the system was free from malware or any external threat. So there's a very comprehensive supply chain risk management strategy put in place and for this program we believe that this is the most secure edge computing system that the Army's ever purchased. It's absolutely critical that it be so, since ultimately there will be somewhere between a 100,000 and 125,000 of these systems fielded across the Army and Marine Corps, at the edge of the battlefield with each one of these systems serving as potential on ramp to the network and in an area of situational awareness that is absolutely mission critical. There was a time when we derived quick benefit from having an advantage and a capability that our opponents didn't. And over time the capability has evolved from a nice to have capability to a mission critical capability that we'd be hard pressed to fight without. C4ISRNET: The Army has put a lot of emphasis on size, weight and power. Can you explain how that manifests itself on the battlefield? Guyan: We optimize size, weight and power in two ways. At the hardware level we optimize by staying at the leading edge of available technologies, available commercial technologies and rapidly adapting and adopting them for employment in this mission critical extreme environment. The computers and displays are the soldiers' path to the network. It has to work at -40 centigrade and it has to work at 80 degrees centigrade. It has to work in extreme vibration and it has to work in contested EMI environments. It has to work all the time. For example, we led the charge in the adoption and fielding of solid state hard drives versus rotating media, which allowed us to not only improve the resiliency of the system, but also to reduce size, because we no longer have to isolate the rotating hard drive from the shock and vibration. We also migrated from the old backlight technology to an LED backlight, which is much more reliable, particularly in shock vibration at temperature extremes. But it also requires far less power. The other thing that we've been able to do is rapidly adapt the latest processor technologies when they're available. Of course, processors continue to get faster, smaller, and use less power. We're able to make sure that every generation of system can deliver more computing capability for less power, and less power means less heat. Full article: https://www.c4isrnet.com/show-reporter/technet-augusta/2018/08/21/what-reduced-size-weight-and-power-mean-on-the-battlefield/

  • Preliminary Consortium Agreement for the European Modular and Multirole Patrol Corvette Signed today at EURONAVAL

    October 19, 2022 | International, Naval

    Preliminary Consortium Agreement for the European Modular and Multirole Patrol Corvette Signed today at EURONAVAL

    The CEOs of Naviris, Fincantieri, Naval Group and Navantia signed a preliminary consortium agreement at Euronaval, whose objective is to rule the execution of the Modular and Multirole Patrol Corvette...

All news