5 décembre 2019 | International, Aérospatial

No F-35 For You: The French Air Force's New Rafale Fighter Won't Be Stealthy

by Sebastien Roblin

Key point: Paris wants new planes, but it has no plans to build or buy its own stealth fighters.

In January 2019, French Defense Minister Florence Parly announced France would commit $2.3 billion to develop an F4 generation of the Dassault Rafale twin-engine multirole fighter. This would include production in 2022–2024 of the last twenty-eight of the original order of 180 Rafales, followed by the purchase of an additional thirty Rafales F4.2s between 2027–2030, for a total of 210. Since 2008, France has deployed land- and carrier-based Rafales into combat in Afghanistan, Iraq, Libya, Mali and Syria.

In January 2019, French Defense Minister Florence Parly announced France would commit $2.3 billion to develop an F4 generation of the Dassault Rafale twin-engine multirole fighter. This would include production in 2022–2024 of the last twenty-eight of the original order of 180 Rafales, followed by the purchase of an additional thirty Rafales F4.2s between 2027–2030, for a total of 210. Since 2008, France has deployed land- and carrier-based Rafales into combat in Afghanistan, Iraq, Libya, Mali and Syria.

The Rafale is much more agile than the F-35, with superior climb rate, sustained turn performance, and ability to super-cruise (maintain supersonic flight without using fuel-gulping afterburners) at Mach 1.4 while carrying weapons. The Rafale's all-moving canards—a second set of small wings near the nose—give the Rafale excellent lift and low-altitude speed and performance, as you can see in this majestic airshow display.

However, compared to larger fourth-generation twin-engine jets like the Su-35 or F-15, the Rafale can't fly quite as high (service-ceiling of 50,000 instead of 60,000 ft), and has a lower maximum speed (only Mach 1.8 compared to Mach 2-2.5).

The Rafale's agility won't help as much if it is engaged at long distances by enemy surface-to-air missiles and stealth jets. To compensate, the Rafale boasts an advanced Spectra electronic warfare system that supposedly can reduce the Rafale's cross-section several times over—it is rumored by reflecting back signals using ‘active canceling.' Spectra also incorporates powerful jammers and flare and chaff dispensers, provides 360-degree early-warning, and can even assist Rafale pilots in targeting weapons to retaliate against attackers.

Spectra's capabilities reportedly allowed Rafales to deploy on raids over Libyan airspace in 2011 before air defense missiles had been knocked out.

Other key capabilities include sensor fusion of the Rafale's RBE-2AA Active Electronically Scanned Array multi-mode radar, which can track numerous targets over 124 miles away, with its discrete OSF infrared-search and track system, which has an unusually long range of sixty-two miles. Rafale pilots also benefit from uncluttered instrumentation combining voice command with flat-panel touch screens.

The multirole jet carries a punchy thirty-millimeter revolver cannon and up to twenty-one thousand pounds of weapons on fourteen hardpoints, making it a versatile air-to-ground platform. Because Paris requires expeditionary capability in Africa, the Rafale can refuel in flight and carry up to five fuel tanks for very long transits, and can be operated from relatively unprepared airfields, unlike most high-performance jets.

What's new in the Rafale F4?

Dassault produces three basic types of Rafales: the single-seat Rafale-C, the two-seat Rafale-B (the additional weapon systems officer being preferred for strike and reconnaissance missions) and the carrier-based single-seat Rafale-M, which has an arrestor hook, reinforced landing gear and buddy-refueling pod capability. Each type has evolved in common generations designated F1, F2, F3 and F3R.

The F4 generation introduces additional network-centric warfare capabilities and data-logistics similar to those on the F-35 Lightning, enabling Rafales on patrol to build a more accurate picture of the battlespace by pooling their sensors over a secure network, and even exchange data using new satellite communications antenna. The pilots also benefit from improved helmet-mounted displays.

The Spectra defensive system will receive more powerful jammers and new threat libraries tailored to meet the improving capabilities of potential adversaries. Furthermore, Dassault seeks to use “Big Data” technology to develop a predictive maintenance system reminiscent of the F-35's troubled ALIS system to cost-efficiently implement preventative repairs.

Other systems to be tweaked include the air-to-ground mode of the RBE-2AA radar, the M88 turbofan's digital computers, and a new AI-system for its reconnaissance and targeting pod allowing it to rapidly analyze and present information to the pilot. Rafale-Ms will also receive a new automated carrier landing system.

New weapons set for integration most notably an improved model of the Mica short-to-medium range air-to-air missile, which has a range of forty-nine miles. The Mica can be launched without initially being locked and guided remotely by a data link on the fighter before engaging either an infrared or AESA radar seeker to close in for the kill, using a vector-thrust motor to pull off tight maneuvers. Because both the Rafale and the Mica missile can employ passive infrared targeting without using an indiscrete active-radar for guidance, the MICA can be launched with little warning for the target.

The Mica-NG model will incorporate new infrared-matrix sensors for better performance versus stealth fighters, carry additional propellant for longer range, and integrate internal sensors to reduce maintenance costs. Its dual pulse motor will allow it to accelerate just prior to detonation for a greater probability of achieving a kill.

For longer range engagements, newer Rafales F3Rs and F4s can launch British Meteor missiles which can sustain Mach 4 speeds.

Another weapon set for integration is heavier 2,200-pound variants of the AASM HAMMER, a guidance kit similar to the U.S. JDAM. Previously, the Rafale could only carry 485-pound variants of the weapon which can use either GPS-, laser- or -infrared guidance to deliver precise strikes. Unlike the JDAM, the HAMMER also incorporates a rocket-motor, allowing it to hit targets up to thirty-seven miles away when released at high altitude.

The Rafale will also be modified to integrate future upgrades of the French SCALP-EG stealthy subsonic cruise missile and the supersonic ASMP-A cruise missile which carries a 300-kiloton-yield nuclear warhead. Reportedly France may develop a hypersonic AS4NG variant increasing range from 300 miles to over 660 miles.

Currently, the French Armée de l'Aire has three Rafale multi-role squadrons and two nuclear-strike squadrons based in Mont-de-Marsan (south-western France), Saint-Dizier (north-eastern France) and al-Dhafra in the UAE. There are also an operational conversion unit and a testing and evaluation squadron.

The French Navy has three Rafale-M squadrons which rotate onboard France's nuclear-powered carrier Charles de Gaulle. In 2018, a squadron of Rafale-Ms proved their capability to operate from the U.S. carrier George H. W. Bush.

The forthcoming Rafale F4s will progressively replace France's fourth-generation Mirage 2000s, over 110 of which remain in service today. French periodical Le Figaro claims that older Rafales will also eventually be updated to the F4 standard.

Abroad, Dassault is finish delivery of orders from Egypt (twenty-four), Qatar (thirty-six) and India (thirty-six). All three countries may order additional Rafales, though the price of its initial Rafale order has caused a political scandal in New Delhi.

As France must wait nearly two decades before a European stealth fighter can enter service, its armed forces are betting that in the interim adding networked sensors and weapons to the Rafale's superior kinematic performance and powerful electronic warfare systems will keep the agile jet relevant in an era of proliferating stealth aircraft and long-range surface-to-air missiles.

Sébastien Roblin holds a master's degree in conflict resolution from Georgetown University and served as a university instructor for the Peace Corps in China. He has also worked in education, editing, and refugee resettlement in France and the United States. He currently writes on security and military history for War Is Boring. This first appeared early in June 2018.

https://nationalinterest.org/blog/buzz/no-f-35-you-french-air-forces-new-rafale-fighter-wont-be-stealthy-101722

Sur le même sujet

  • Four Bidders Square Off Over Two Coveted U.S. Air Force Contracts

    30 mars 2020 | International, Aérospatial

    Four Bidders Square Off Over Two Coveted U.S. Air Force Contracts

    Irene Klotz United Launch Alliance (ULA) CEO Tory Bruno is keen on competition, even if that means losing a government contract every now and then, as happened in February when NASA chose a SpaceX Falcon Heavy to launch a science probe to the metal asteroid Psyche in 2022 for $117 million. ULA had offered Psyche mission launch services aboard its workhorse Atlas V for an undisclosed price. “Can't win them all,” Bruno tells Aviation Week. “We win about half, but that's OK. That's how competition is supposed to work. “It's healthy for the government. It's healthy for the industry . . . because we try to be as efficient as we can and to differentiate ourselves, which ultimately usually results in more value for the customer, either in capabilities or in prices,” he adds. Bruno's mettle is being put to the test. This summer, a heated two-year competition to provide national security space launch (NSSL) services through 2027 concludes with the U.S. Air Force deciding whether to retain incumbents ULA and SpaceX or replace one or both with Northrop Grumman and/or Blue Origin. The Air Force Space and Missile Systems Center, in partnership with the National Reconnaissance Office, plans to award firm fixed-price, indefinite-delivery contracts to two domestic launch service providers for procurements in fiscal 2020-24, with work split 60/40%. The NSSL Phase 2 Launch Service Procurement (LSP)—the first such solicitation since 2005—is designed to end dependence on Russian rocket engines for national security space launches, reduce launch costs and spur competition for current and future national security space launches. Unlike its competitors, ULA's business plan rests on winning a Phase 2 award. “We have an entire business plan that presumes we are going to win Phase 2,” Bruno said during a March 10 media roundtable at the Satellite 2020 conference in Washington. If ULA does not win, he added, “We'd have to go evaluate that.” Based on satellite orders compiled by several industry association surveys, Bruno figures there is enough business for two domestic medium-to-heavy-lift launch service providers, and he is confident ULA will be one of them. “There isn't much rocket science to this,” Bruno said. “The launch service provider is at the end of a 5-7-year-long chain. It's going to be about 30-35 launches a year for the next several years,” he said during a March 11 panel session at the conference. “We all need about 8-12 launches a year, at least, to be a sustainable, viable business. That makes room for four [launch service providers]. “The Russians will always have one—it is state-sponsored—they will make sure. Ariane will always exist, the Europeans will make sure. That leaves two for the U.S. because we want to ensure space access via two providers. So that is the right number, and that's why the Air Force will select two very shortly this summer,” Bruno says. The SpaceX View SpaceX looks at the launch market pie with a different eye. First, the company expects more than half of its projected 35-38 Falcon launches this year to carry Starlink satellites manufactured, owned and operated by SpaceX into low Earth orbit (LEO), a project intended to provide global high-speed, low-latency internet service. SpaceX's sixth batch of 60 Starlinks reached orbit on March 18, bringing the constellation head count to about 360. When that number doubles, SpaceX expects to be able to provide seamless internet coverage covering latitudes about 25 deg. north and south of the equator. After 24 launches, with approximately 1,440 Starlinks in orbit, the network will be capable of full global coverage, according to SpaceX President and Chief Operating Officer Gwynne Shotwell. Ultimately, SpaceX plans to operate approximately 12,000 satellites, with a possible expansion to 42,000. The company is still working with the International Telecommunication Union for spectrum allocation and with individual countries for permission to transmit data to and from non-U.S. territories. Starlink's raison d'etre is to bring in enough revenue to carry out the space colonization dream of tech entrepreneur Elon Musk, who founded SpaceX in 2002 with the goal of creating technologies for interplanetary transportation, with a particular eye on Mars. Toward that end Musk, who also serves as SpaceX CEO and chief engineer, is focused on developing the Starship, a two-stage, fully reusable transportation system capable of placing 110 tons (100 metric tons) into LEO. By comparison, the 1960s-era single-use Saturn V Moon rocket could put 154 tons into LEO. SpaceX is counting on revenue from the Starlink constellation to fast-track Starship development. Flying cargo and crew to the International Space Station and launching commercial and government satellites on the existing Falcon 9 and Falcon Heavy fleet can bring in up to $3 billion a year, Musk said during a March 9 keynote address at Satellite 2020. Providing broadband should generate an order of magnitude more revenue, probably about $30 billion a year—a fraction of the current $2.8 trillion value of the telecommunications industry, Musk says. “Starlink is not some huge threat to telcos. In fact, it will be helpful to telcos because Starlink will serve the hardest-to-serve customers that telcos otherwise have problems with,” using landlines or cellphone towers, he adds. Shotwell says that even without Starlink, SpaceX is profitable. “Starlink is additive to our business,” she told reporters during a media roundtable in October. “We make money on the core business of SpaceX, which is Falcon 9, Falcon Heavy and Dragons. “We could do Starship just on our own operating income, on our revenue, if we were to spread it out over time,” she added. “But Elon wants to get things done quickly, and so we're spending a lot of money on advancing Starship and Starlink. SpaceX does not need Starlink to be a healthy business.” In support of Phase 2, SpaceX has unveiled plans for a movable tower at its Falcon launch base at NASA's Kennedy Space Center in Florida. The 284-ft.-tall gantry features 11 floors and doors to shield Falcon 9 and Falcon Heavy rockets from rain and wind, while providing a controlled environment to hoist payloads on top of the vehicles as they stand vertically at the pad. SpaceX currently installs payloads horizontally inside hangars near its three launchpads. Some of the national security missions, however, require vertical integration. SpaceX also is working to qualify a longer payload shroud, which likewise is required for some NSSL missions. Starry-eyed SpaceX's passion for the Starship, previously known as the Big Falcon Rocket, caused a rare misstep in the company's quest for U.S. government launch contracts when it included a small role for the megabooster in its LSP developmental Launch Service Agreements (LSA) proposal, a precursor to the ongoing competition for launch services. In 2018, the Air Force awarded three LSA contracts, collectively worth about $2 billion, to ULA, Northrop Grumman and Blue Origin to help defray the costs of developing launch-system prototypes aimed at fulfilling various national security payload delivery requirements. SpaceX's LSA bid included use of the Starship for launch of some of the heaviest payloads and most challenging missions in 2025 and beyond, a scenario the Air Force deemed “high-risk.” SpaceX responded in May 2019 with a federal lawsuit, challenging the Air Force's procurement process. The lawsuit is under consideration in U.S. District Court for the Central District of California. An LSA award was not necessary for companies to compete for the LSP Phase 2 program. Ironically, iconoclastic SpaceX, which previously sued the Air Force to speed up the breakup of ULA's 2006-16 monopoly on national security space launch services, is the only Phase 2 contender offering an existing and certified family of launchers. The company, which publishes base pricing on its website, has not disclosed what it would charge for NSSL missions, but SpaceX is well-known for undercutting its competition. Ten years ago, Iridium shopped for launch services to put its next-generation network of 75 communications satellites into orbit. It signed with SpaceX, which at the time was preparing for the first flight of the Falcon 9. SpaceX's bid for the Iridium Next launch campaign—which consisted of eight flights from January 2017 to January 2019 from Vandenberg AFB in California—was $500 million. “My next price from there was $1.2 billion to launch the same 75 satellites,” says Iridium CEO Matt Desch. “Thank God for SpaceX . . . . I'm not sure I could have afforded the second-best price.” Six years later, SpaceX broke ULA's monopoly on the Air Force's launch business with an $83 million winning bid to fly a GPS 3 satellite, undercutting the government's cost estimate, based on previous GPS launches by ULA, by about 40%, the Space and Missile Systems Center said at the time. Price and performance may tip the scales in SpaceX's favor for the upcoming Phase 2 LSP awards. With its March 18 launch, SpaceX has carried out 83 Falcon 9 missions, with one inflight failure and one accident during a prelaunch static test fire that cost another booster and payload. The Falcon Heavy has flown three times, all successfully. The Rocket That Scrum Built One company hoping to wrest the NSSL business away from the incumbents is Northrop Grumman, which presents a very different view of launch market viability. “The Air Force's intent from the beginning is to make sure that our business case didn't depend on them with large numbers of launches,” says Northrop's Charlie Precourt, vice president of propulsion systems. “We're not a launch vehicle searching for lots of different payloads,” he adds. “We're a launch vehicle that is built on existing manufacturing lines, facilities and workforce infrastructure.” Northrop's Phase 2 offering, the Omega, can close its business case with just 3-4 launches per year, far below ULA's estimate of what it takes to sustain a viable medium- to heavy-lift launch service program. Northrop is heavily leveraging investments and existing work for NASA and the defense community to develop the Omega, a family of two-stage, solid-propellant boosters topped with an Aerojet Rocketdyne RL10 upper stage. ULA also is using an RL10 for the upper stage of the Vulcan. “The core of the Omega rocket is in form, fit and function the same as a segment of the SLS [Space Launch System] booster,” says Precourt. “What we're doing is a little bit different than what a launch vehicle company would normally do, which is to pursue lots of different payload customers. We meet that business need for the Air Force in a different way.” But the Omega also is a departure from Northrop's current programs, which include the five-segment solid-rocket motors for NASA's SLS, the air-launched Pegasus booster, the Minotaur and Antares. Northrop used an agile development system called scrum—initially developed by teams to write software in sprints—to design and manufacture the Omega. “We like to call Omega the rocket that scrum built,” says Precourt. “Scrum is about moving faster, how to innovate to go faster and do more in less time.” Between the May 2019 and February 2020 static test firings of the Omega's first and second stages in Promontory, Utah, engineers used scrum methodologies to apply lessons learned, such as determining what the environments were like inside the motor and how it behaves when fired, Precourt says. Both static firings were successful, completing full-scale engine testings planned prior to the Omega's debut launch in 2021. However, the May test, during which the Omega's two 31-ft. solid-propellant rocket motors were ignited, ended with the booster's 18-ft.-long nozzle breaking apart, a function of atmospheric conditions during testing and not an issue for certification or flight, Northrop says. “The nozzle was just one part of the design we analyzed. Our engineers ran in sprints, with the customer as part of the team, to assess data, anchor models and optimize the design,” says Precourt. “By taking a little extra time between the two tests and utilizing scrum, we were able to fully test design improvements without any impact to our launch-readiness date. We're deploying scrum more broadly across the plant as we go.” Under terms of Northrop's $792 million LSA agreement, awarded in 2018 for Omega development and certification work, the company plans to conduct two more full-duration static tests of the first and second stages after the Omega's first two flights, which will be used to certify the booster for national space security missions. Northrop is developing the Omega primarily to provide launch services to the Air Force, but it is also offering the rocket commercially. In December, the company announced it had a customer for the Omega's first flight, one of two missions required prior to flying high-value national security payloads. The debut mission will carry one or two Saturn NationSat geostationary communications satellites. Northrop said it is “converging on an agreement” with a customer for the Omega's second flight, which is expected to launch next summer, says spokeswoman Jennifer Bowman. Winning a follow-on Phase 2 contract is a high priority for Northrop. “We've been working really hard on that,” Precourt tells Aviation Week “Northrop as an entire company is focused on national security space. “We do threat assessment, mission planning, mission control and operations, satellite design and manufacturing [and] direct support of information to the warfighter,” he says. “Launch is a piece of that full-value stream of delivering to the warfighter, so NSSL fits right into the DNA of the company. We're really determined to deliver for the Air Force.” As to what it will take to dethrone an incumbent, Precourt says it is not that unusual: “It all comes down to who is best-prepared and best meets the need. That's what we're working hard to do.” Getting a Toehold Among the four contenders for the Air Force's launch business, Blue Origin's New Glenn offering may be the longest-shot, but even if it does not win a Phase 2 contract, it fully expects to be a key part of the team. That is because the company's BE-4 engines will power the first stages of both ULA's Vulcan rocket and Blue's New Glenn. Company founder Jeff Bezos has invested $2.5 billion in the New Glenn, including a new $200 million, 350,000-ft.2 factory and office complex in Huntsville, Alabama, where BE-4 engines and the New Glenn's BE-3U upper stages will be manufactured. Blue Origin also is expanding New Glenn manufacturing facilities adjacent to Kennedy Space Center. In March, the normally low-profile company displayed videos of the New Glenn's newly completed mission control center, a first-stage fuel tank, which is the rocket's largest structure, and the first completed 23-ft.-long payload fairing. At nearby Cape Canaveral AFS, a launch complex for the New Glenn is under construction, with the booster's debut expected in late 2021. Like SpaceX and Northrop, Blue Origin's future does not hinge on winning a Phase 2 contract. The company won LSA funding, which it says it is using to cover NSSL certification costs and program requirements to develop a West Coast launch site for polar orbits. Blue Origin has signed New Glenn launch contracts with at least five customers—Eutelsat, mμ Space Corp. of Thailand, Sky Perfect JSAT, OneWeb and Telesat—several of which are buying multiple flights. Powered by seven BE-4 engines on its reusable first stage, the New Glenn is designed to carry nearly 50 tons to LEO. “And that is the smallest orbital vehicle we are planning to build and launch,” says Clay Mowry, Blue Origin vice president of sales, marketing and customer experience. Like SpaceX's Musk, Bezos aims to parlay his company's space transportation technology into a future that more closely resembles the science fiction novels both men hold dear. Bezos' vision is for millions of people to be living and working off Earth. ULA and Northrop, meanwhile, seek only to serve the national security mission. The Air Force has never had such ripe pickings. https://aviationweek.com/shows-events/space-symposium/four-bidders-square-over-two-coveted-us-air-force-contracts

  • HENSOLDT and 21strategies collaborate on next-generation artificial intelligence for defence systems

    26 janvier 2023 | International, C4ISR

    HENSOLDT and 21strategies collaborate on next-generation artificial intelligence for defence systems

    The aim is to jointly drive the development of next-generation artificial intelligence (AI) for defence systems

  • Here’s how the Army is tackling AI

    23 août 2018 | International, C4ISR

    Here’s how the Army is tackling AI

    By: Mark Pomerleau The Army is “all in” on the Department of Defense's larger efforts to harness the power of artificial intelligence. Speaking before an audience Aug. 22 at TechNet Augusta, Army CIO Lt. Gen. Bruce Crawford said the Army is on board with the larger efforts the department is taking, such as building out the Joint Artificial Intelligence Center and crafting a DoD AI strategy. DoD's CIO, Dana Deasy, speaking Aug. 13 at the DoDIIS conference in Omaha, Nebraska, said DoD delivered its AI strategy to Congress, including the plan to stand up the Joint Artificial Intelligence Center (an unclassified version of the strategy will be released later this year). Deasy noted that the center will deliver new AI capabilities and concepts that will support the DoD's missions and business functions. It will also bring traditional and nontraditional innovators together in a way that's never been seen before, though Deasy did not provide many details. Full article: https://www.c4isrnet.com/show-reporter/technet-augusta/2018/08/22/heres-how-the-army-is-tackling-ai/

Toutes les nouvelles