Back to news

April 21, 2020 | International, Naval

NATO’s ‘startup’ charts a bold future in maritime unmanned systems

By: Michael D. Brasseur , Rob Murray , and Sean Trevethan

Last December, at their meeting in London, NATO leaders declared: “To stay secure, we must look to the future together. We are addressing the breadth and scale of new technologies to maintain our technological edge, while preserving our values and norms.” These two sentences were, in part, a nod to a significant piece of work the alliance is undertaking within the broader mandate of alliance innovation — NATO's Maritime Unmanned Systems Initiative.

Granted, on its own this sounds both technical and narrow within the context of emerging technology, a context that includes: artificial intelligence, data, space, hypersonic weapons, bio technologies, quantum research, autonomy and more. So why are maritime unmanned systems relevant now? Simply put, developing the numbers of manned submarines, aircraft and ships required to keep pace with potential adversaries is simply not economically viable (almost $3 billion per Virginia-class U.S. submarine).

Not since the Cold War has NATO needed the volume of maritime forces to protect our seas and oceans from would-be foes.

NATO's areas of interest are expanding. As climate change affects the Arctic, new maritime routes are being created, which Russia in particular is exploiting with its submarines and ships. This matters because it exposes a new flank on NATO's high-north periphery, and if left unchecked is a potential vulnerability whilst also being a potential opportunity; this, coupled with an increasing need to protect our undersea data infrastructure means NATO's geostrategic responsibilities continue to grow.

Therefore, if allies are to reinforce NATO's maritime posture, deter Russian aggression, guard against Chinese activity, and protect both critical national infrastructure and our sea lines of communication, NATO must do things differently and at the speed of relevance.

NATO's Maritime Unmanned Systems Initiative was agreed by 13 defense ministers in October 2018. Since then, the initiative's success has attracted the participation of three more allies and garnered significant interest from all of NATO's maritime nations. The political agreement struck in 2018 provided the mandate for NATO to bring together disparate strands of common work ongoing within nations. NATO, acting as a network, enabled allies to become greater than the sum of their parts.

The focus is threefold: utilize world-leading research to increase allied interoperability between conventional forces and unmanned drones; establish new tactics for our sailors to truly leverage these technologies; and develop secure digital communications for military drones across all domains (air, sea and land). Addressing these priorities together will enable this effort to be scaled across the alliance, at pace.

To date, the speed of this effort has been breathtaking. So much so that even the United States and the United Kingdom — two allies who have invested the most in this area — are using the NATO initiative as a catalyst for their own national efforts. The last 12-plus months has seen the creation of a NATO project office, a governance body, as well as the planning and successful execution of the world's largest and most complex maritime unmanned systems exercise off the Portuguese coast in September 2019. This event brought together the very best from our navies, industry, scientific institutes and academia. The results were hugely impressive, with many “world firsts” including maritime unmanned systems augmenting conventional forces through multiple scenarios.

We now have vast swaths of insight and information to start achieving those three goals of improving interoperability, enhancing our tactics and developing secure communications. The goal of improving allied interoperability is actually about enhancing standards. A topic often overlooked at the policy level but critical to the DNA of the NATO alliance. Standards drive interoperability, which in turn drives readiness, which ultimately aids deterrence.

As NATO leads the development of new technologies, so too must come new standards that our industries and military can implement. Open architectures will be key, but allies and industry need to realize that we need to solve problems — not address requirements. No perfect solution will ever be delivered on the first attempt. The alliance will need to both innovate and iterate on operations in order to maintain advantage. This may be a cultural shift to some acquisition purists who are used to developing complex warships over 20-plus-year time frames.

However, the challenge remains our ability to scale. With this project we have an agile global team functioning across multiple national and allied bureaucracies, each with their own culture and ways of working. Through engagement and investment, this team is yielding disproportionate results. Indeed, 2019 demonstrated what can be done with some imagination, effort and focus. But continual growth at speed will require faith by allies to maintain the course. Such is the nature of true change and innovation.

There is a lot to do, and the stakes are high. Near-peer competitors are once again very real. Despite the global lockdown caused by the new coronavirus, COVID-19, the initiative continues to progress through synthetic networks and simulation, driven by passion and intent. Our economy, our data and its infrastructure still need protecting, now more than ever. This effort strives to accelerate maritime unmanned systems into NATO's arsenal to patrol the vast swaths of ocean and offset evolving threats. Success will be seen because it is being built on allied nations' shared values and norms, the same values and norms that NATO leaders recognized in London last year.

Michael D. Brasseur is the director of naval armaments cooperation for the U.S. mission to NATO. He is also the first director of NATO's “startup,” the Maritime Unmanned Systems Innovation and Coordination Cell. Rob Murray is the head of innovation at NATO Headquarters. Sean Trevethan is the fleet robotics officer of the British Royal Navy, working in the future capability division at Navy Command Headquarters in Portsmouth, England.

https://www.defensenews.com/opinion/commentary/2020/04/20/natos-start-up-charts-a-bold-future-in-maritime-unmanned-systems/

On the same subject

  • COVID-19 Impacts Air Force One Replacement Bottom Line

    April 30, 2020 | International, Aerospace

    COVID-19 Impacts Air Force One Replacement Bottom Line

    Lee Hudson Graham Warwick Boeing is facing a novel coronavirus-related setback to the VC-25B presidential transport program, causing the company to recognize a $168 million impact in the first quarter. The VC-25B effort faced “inefficiencies” because personnel were directed to work virtually because of COVID-19. This forced Boeing to re-evaluate its estimate, Greg Smith, the company's chief financial officer, told reporters April 29 following a first-quarter earnings call. “The reach-forward loss on VC-25B is associated with engineering inefficiencies from the COVID-19 environment,” according to Boeing's first-quarter earnings report. “We believe these inefficiencies will result in staffing challenges, schedule inefficiencies and higher costs in the upcoming phases of the program.” The U.S. Air Force acknowledged the VC-25B program is a victim of COVID-19 because of component delivery delays from overseas suppliers, the service's acquisition executive, Will Roper, told reporters April 29. However, the V-25B program is a fixed-price contract, meaning Boeing will take the financial hit, not the Air Force. Smith reiterated that despite the financial loss, the program remains on schedule. Boeing began structural modifications on the first 747-8 aircraft to become a VC-25B in March after removing the interior, engines, auxiliary power units and other subsystems. The Air Force acquired the 747-8s in 2017 after selecting Boeing to replace two VC-25As that now perform the role. The service anticipates spending $5.3 billion to complete modifications on both aircraft to begin operations at the end of 2024. https://aviationweek.com/defense-space/budget-policy-operations/covid-19-impacts-air-force-one-replacement-bottom-line

  • Army, Navy conduct key hypersonic missile test

    December 14, 2024 | International, Land

    Army, Navy conduct key hypersonic missile test

    The successful tests brings both services closer to fielding the long-awaited system.

  • Heavy robotic combat vehicles put to test in the Colorado mountains

    August 10, 2020 | International, Land

    Heavy robotic combat vehicles put to test in the Colorado mountains

    By: Jen Judson WASHINGTON — The U.S. Army grappled with the challenge of incorporating heavy robotic combat vehicles into its formations during a monthlong experiment at Fort Carson, Colorado, coming away with a clearer path to bringing robots into the fold. Still, the service is years away from ground robots seamlessly fitting in with units. The Army has been evaluating the performance and possible utility of heavy RCVs for more than a year through the use of robotic versions of M113 armored personnel carriers, but the experiment at Camp Red Devil on Fort Carson is the most complex to date. “We're taking a lot of technology, we're experimenting and this experiment was 100 percent successful,” Brig. Gen. Ross Coffman, who is in charge of the Army's combat vehicle modernization efforts, told reporters in an Aug. 6 briefing. “The whole purpose was to learn where the technology is now and how we think we want to fight with it in the future.” Coffman said that doesn't mean all of the technology was successful or that everything performed perfectly. “Some [technology] knocked our socks off, and some we've got a little bit of work to do. But that is why we do these things, so we can do it at small scales, so we can learn, save money and then make decisions of how we want to fight in the future.” Going the distance In part, the Army is tackling a physics problem as well as a technology challenge involving the distance between the robot and the controller, Coffman said. But the service has found companies that can create waveforms to get the required megabytes per second to extend the range in the most challenging environments like dense forested areas, he added. During the experimentation, Coffman said, the Army tested the waveforms. “We went after them with [electronic warfare], we saw they were self-correcting, so that if they're on one band, they can switch to another,” he said, “so we have a really good idea of what is in the realm of the possible today.” The service was also able to almost double the range between controller and robot using the waveforms available, he explained. “If you could extend the battlefield up to 2 kilometers with a robot, then that means that you can make decisions before your enemy came, and it gives you that trade space of decisions faster and more effectively against the enemy.” The Army was also very pleased with the interface for the crew. The soldiers were able to located themselves and the robots, communicate among themselves, and see the graphics that “just absolutely blows us away,” Coffman said. The software between the robot and control vehicle — a Bradley Infantry Fighting Vehicle — “while not perfect, performed better than we thought it would,” Coffman said. The software also allowed the robot move in front of the control vehicle by roughly 80-1,000 meters as well as identify hotspots and enemy locations. “I didn't know how that was going to work,” Coffman said. “There were some challenges that we had, like getting exact granularity at distance, but the ability that we could identify hotspots and enemy positions I thought was absolutely exceptional.” As a side experiment, the Army also tested a robotic version of the Stryker Dragoon infantry combat vehicle, which is equipped with a 30mm cannon and uses the same software and hardware in control vehicles, Coffman noted. The experiment included live fire. In the heavy RCV surrogates, the target recognition worked while stationary, but part of the challenge the Army is tackling is how to do that on the move while passing information to a gunner, he added. Work on stabilizing the system for multiple terrains also needs performed, but that was indicative of using clunky, old M113s and turning them into robots rather than having a purpose-built vehicle like the RCV Medium and RCV Light. The Army awarded contracts to a Textron and Howe & Howe team to build the RCV-M, and a QinetiQ North America and Pratt & Miller team to build the light version late last year and early this year. Those are being built now. Training on the system also proved to be much easier than anticipated. Coffman said he asked how long the operators need to train, and was surprised to hear they need roughly 30 minutes to learn. “I thought it was going to take them days, but our soldiers are so amazing and they grew up in this environment of gaming.” What's the Army's next step? Now that the first major experiment is done, the Army plans to build up to a company-level operation in the first quarter of fiscal 2022 at Fort Hood, Texas. The experiment will also include four medium RCV prototypes and four light RCVs. While the experimentation at Fort Carson was focused on cavalry operations where the robots served more in a scout mission and proved they could be effective in a reconnaissance and security role, the experiment in FY22 will move the robots into more of an “attack and defend” role, according to Coffman. A new radio will be added to increase range as well as a tethered UAV and more leap-ahead target recognition capability that uses algorithms trained on synthetic data that is “truly cutting-edge,” Coffman said. After each of these experiments, he added, the Army reaches a decision point where it decides how to proceed, whether that is more experimentation or a fielding decision. “We have enough information tactically and technically that I believe we can move forward to the second experiment,” he noted. Following the second experiment, the Army will reach a decision point in FY23 on whether to move the effort into an official program of record. Once that is decided, an acquisition strategy would be identified if the decision is to move forward, according to Coffman. https://www.defensenews.com/land/2020/08/07/heavy-robotic-combat-vehicles-put-to-test-in-the-colorado-mountains/

All news