Back to news

July 10, 2020 | International, C4ISR

Moving further into the information age with Joint All-Domain Command and Control

The United States' comparative military advantage has eroded significantly as the technologies that helped sustain its primacy since the Cold War have proliferated to great power and regional competitors such as China, Russia, North Korea, and Iran. They have evolved their capabilities and operational approaches to negate and otherwise avoid traditional American warfighting strengths. The United States is highly unlikely to regain its competitive advantage through like-for-like replacements of its legacy platforms with incremental improvements while remaining beholden to industrial age notions of warfare focused on individual weapon systems focused on inflicting attrition.

Instead, future success demands that the U.S. military embrace a new approach. Advancements in computing and information technology hold the potential to radically transform how military forces attain desired effects, where success depends foremost on the speed and integration of information. By harnessing information technologies to promote the rapid and seamless exchange of information across platforms, domains, services, and even coalition partners, commanders can make faster decisions and better integrate actions across domains. In such a manner, we can enable friendly forces to operate inside the adversary's decision-making cycle and impose multiple, simultaneous dilemmas that collectively confound and paralyze an adversary's ability to respond. To put it simply — it comes down to understanding the battlespace to know when and where to position forces to maximize their effectiveness, while minimizing vulnerabilities.

Realizing this future vision of combat, however, faces challenges given legacy command and control (C2) systems and processes currently in use that were not designed for the speed and complexity that information age all-domain operations demand. Overcoming these constraints will require not just material changes involving technology, but also a shift in how the role of networks and information systems are perceived relative to weapons and platforms. Recognizing this, military leaders are pursuing joint all-domain command and control (JADC2) as the guiding construct to address these challenges. Undeniably an ambitious undertaking, the success of JADC2 will ultimately depend upon having a champion at the top of the Department of Defense that will guide the modernization of related policy, acquisition, and concepts of operations toward a common goal that all relevant stakeholders can understand and accept as the desired way forward.

Progress to date

Although U.S. forces can presently conduct multi-domain operations, current practices are far from what will be required when facing advanced adversaries. Each service branch and coalition partner organize, train, and equip their own forces, which joint force commanders then stitch together in a federated “joint and combined” employment construct. This ensures that military personnel and their communications and weapon systems can work together in a synchronized fashion. In other words, the services tend to develop their capabilities in a stand-alone manner focused around their primary operating domain without an overarching construct to ensure joint or allied partner interoperability. This often leads to strategies focused on deconfliction versus collaborative partnership or the interdependence required to achieve force multiplying effects with available resources. As a result, the employment of these capabilities is at best additive, rather than complementary where each one enhances the effectiveness of the whole, while compensating for the vulnerabilities of other assets, optimizing the force's overall capacity for dynamic exploitation of opportunities.

The good news is the services agree that data is the principal currency of future warfare and that leveraging data through a network that connects forces across both domains and services to seamlessly collect, process, and share data will provide an asymmetric advantage in future conflicts. The bad news is that the services are pursuing a number of individual, stove-piped efforts aligned with their own distinct requirements. The development of concepts such as Multi-Domain Operations, Multi-Domain Command and Control, Distributed Maritime Operations, and Expeditionary Advanced Base Operations, as well as their associated capabilities such as the Cooperative Engagement Capability and the Integrated Air and Missile Defense Battle Command System, have been sporadic and uncoordinated, consisting of dozens of programs being developed independently and lacking a coherent vision to align mission requirements and reconcile gaps or redundancies.

To better streamline and synchronize these efforts under the JADC2 banner, the joint staff and the Office of the Secretary of Defense created a joint cross-functional team including representatives from the offices of the DOD Chief Information Officer, the Under Secretary of Defense for Research & Engineering, and the Under Secretary of Defense for Acquisition & Sustainment. This body is charged with bringing the services together to develop the JADC2 construct by identifying gaps and requirements, enhancing experimentation collaboration, and recommending resource allocation for both materiel and non-materiel C2 capability improvements, while also being mindful of the distinct capabilities inherent in each service and government security organization.

At the same time, the Secretary of Defense has tasked the joint staff to deliver a warfighting concept that outlines how the U.S. military plans to fight in the future — a much needed update to existing joint concepts that are becoming increasingly outdated. By describing the capabilities and attributes necessary to fight effectively in the future operating environment—including for JADC2 — this concept will inform the requirements that are produced by the joint requirements oversight council and pushed out to the services.

This top-down guidance is critical to help inform bottom-up technological development and experimentation. Although each of the services has been active developing related technologies, the Air Force has taken the rare step of volunteering to lead JADC2′s development as a joint function. Currently, these efforts center on the Advanced Battle Management System — essentially a “combat cloud” to connect any sensor with any shooter across all domains—that the Air Force is using as its technical engine for enabling JADC2. To help field new capabilities as fast as possible and cultivate broader buy-in, the Air Force is partnering with the other services to conduct small-scale field demonstrations scheduled for every four months. The first experiment was completed in December 2019, which connected Air Force aircraft, Space Force sensors, Navy surface vessels and aircraft, Army air defense and fire units, and a Special Operations Team with incompatible data and communications systems to defeat a simulated cruise missile.

These efforts are intended to develop both the architecture and the technologies required to implement JADC2. As currently envisioned, ABMS includes six key “product categories” and 28 specific “product lines” the Air Force intends to develop over time. Underpinning all these efforts is digital engineering, open architecture, and data standards that allow all the disparate elements to ‘snap' together.

Obstacles remain

Despite encouraging progress and widespread agreement of the necessity for JADC2 across the services and other relevant defense agencies in the DOD, significant obstacles remain before its full potential can be realized.

Foremost among these challenges, current organizational structures and service cultures do not align well with JADC2′s emphasis on employing assets in service- and domain-agnostic ways that entail dynamically connecting sensors and shooters across domains and enabling multiple, rapid shifts in supporting/supported relationships. Specifically, JADC2 raises difficult questions regarding who has decision authority and risk acceptance. Although joint force commanders exercise operational control over joint forces and are tasked to maintain conditions for joint force success, the subordinate command structure tends to exacerbate military service and domain stovepipes that are resistant to ceding control over their assets. Similar frictions are likely to extend beyond a single combatant command, particularly in terms of integrating space and cyberspace capabilities, which have their own functional combatant commands.

Of course, this assumes U.S. forces eventually reach a level of integration that makes resolving such relevant operational authorities necessary. The current service-based model for systems development and acquisition is not optimal for achieving the level of interdependency that JADC2 envisions. Given the complexity and number of programs likely to be affected by ABMS, the Air Force created the position of chief architect to ensure it acquires the right mix of capabilities in a coherent manner. However, the authority of that position does not extend to the other services, which are likely to focus on their own specific operating requirements as they fund and develop their components of JADC2′s technical architecture.

Furthermore, ABMS technical demonstrations focused on connectivity have thus far outpaced development of the operational concepts it is intended to support. Consequently, JADC2 risks over-emphasizing communications and ubiquitous connectivity at the expense of effective battle management. This could have several deleterious implications for future operations. First, it could exacerbate the tendency of senior commanders to centralize control, usurping tactical level decisions. Second, the desire to push as much information as possible forward to the tactical edge could overwhelm warfighters, resulting in operational paralysis or chaos. Third, it could result in unrealistic communications demands, particularly in a conflict with China or Russia or their proxies where the United States' exploitation of the electromagnetic spectrum will be fiercely contested.

Lastly, given the enormous financial investment JADC2 entails, maintaining stable funding will present a continual challenge due to both the likely downward pressure on the defense budget resulting from the COVID-19 epidemic and because it is challenging to cultivate a constituency on Capitol Hill for ethereal “connections” and “data” compared to more tangible platforms, some of which the Air Force defunded in its latest budget proposal in part to fund further development of ABMS. Furthermore, JADC2 is likely to face ongoing scrutiny because the nature of the program does not lend itself to traditional methods of evaluation, as evidenced by the Government Accountability Office's recent report that was highly critical of ABMS.

The path forward

Navigating these challenges requires the highest level of direction from the Office of the Secretary of Defense, and centralized, OSD-level management along the lines of the recently formed joint cross-functional team to champion overall JADC2 development. Using a DOTMILPF-P (doctrine, organization, training, materiel, interoperability, logistics, personnel, facilities, & policy) approach, the primary goal of this group should be to define a “template” to guide modernization policy, acquisition, and concepts of operation. The United States requires the distinct capabilities inherent in its separate military services and other defense agencies. However, they must be bound by a common vision for employing joint and combined forces, as well as an overarching strategy to realize the JADC2 concept. The United States cannot risk boutique solutions that do not integrate in a seamless, mutually reinforcing fashion. To achieve this, the OSD-level group must pursue four critical lines of effort: 1) establish standards and continuity so individual programs integrate within the greater JADC2 enterprise and secure desired outcomes in a timely fashion; 2) support effective programs and help them to maintain momentum and protection from competing bureaucratic interests; 3) engage across the military services and DOD agencies to respond to combatant command warfighting requirements, while also holding participating entities accountable; and 4) ensure industry is fully integrated into appropriate JADC2 development.

If properly executed, JADC2 promises to provide commanders with “decision advantage” by allowing them to gather, process, exploit, and share information at the speed and scale required to defeat potential adversaries. At the same time, allowing joint and combined forces to distribute access to relevant information more widely, JADC2 must also enable new, more flexible command and control techniques that empower subordinate elements to effectively act when they become isolated.

The ability to leverage capabilities across a network through the seamless and ubiquitous sharing of information could also ease requirements for systems that are currently expected to operate independently. The complexity inherent to this approach of overloading requirements on a given program drives lengthy development cycles, time and cost overruns, and delays in capability. Instead, by leveraging numerous redundant function options through a combat cloud, individual systems could focus on narrower requirements where their capability can be maximized while also minimizing cost and technical risk.

Change will not come easy, particularly given how successful the United States has been using the traditional combined arms approach. However, such complacency could be disastrous, given that critical information technology advances are often measured in days, potentially enabling competitors with less dominant industrial combat means to leapfrog past legacy military concepts by investing in newer information technologies and capabilities. The United States' efforts to harness information are not being pursued in a vacuum—America's adversaries are pursuing similar concepts. JADC2 may be ambitious, but it is also imperative to gain a competitive advantage to deter and, if necessary, defeat those potential adversaries.

https://www.c4isrnet.com/opinion/2020/07/09/moving-further-into-the-information-age-with-joint-all-domain-command-and-control/

On the same subject

  • Infantry Squad Vehicle is a cramped ride, but US Army says it meets requirements

    January 26, 2021 | International, Land

    Infantry Squad Vehicle is a cramped ride, but US Army says it meets requirements

    By: Jen Judson WASHINGTON — The U.S. Army's new Infantry Squad Vehicle is a cramped ride and offers limited protection from certain threats, according to a recent report from the Pentagon's chief weapons tester, but it still meets the service's requirements in tests and evaluations, the product lead told Defense News. The ISV “key requirements are being met and we are increasing soldier operational readiness by providing an operationally relevant vehicle that can transport small tactical units to a dismount point faster and in better physical and mental condition for the fight,” said Steven Herrick, the Army's product lead for ground mobility vehicles within the Program Executive Office Combat Support and Combat Service Support. The vehicle was designed for easy transport to operational environments with the infantry's current rotary and fixed-wing transport platforms. The key performance parameters required that the vehicle's weight not exceed 5,000 pounds and that it fit inside a CH-47 Chinook cargo helicopter. Those requirements “force dimensional requirements only allowing the vehicle to be a certain height, width and length,” he said. The requirements led to a vehicle that makes it hard for soldiers with all their gear needed for a 72-hour mission to comfortably fit inside and be able to access rucksacks on the move. The Army assessed three vendors in developmental testing from December 2019 through January 2020. The service chose General Motors Defense to supply the vehicle to the force, with the company beating out an Oshkosh Defense and Flyer Defense team as well as an SAIC and Polaris team. All offerings were capable of carrying a nine-soldier infantry squad with weapons and equipment during movement, the director of operational test and evaluation said in the report. But the Pentagon also noted the ISV “has not demonstrated the capability to carry the required mission equipment, supplies and water for a unit to sustain itself to cover a range of 300 miles within a 72-hour period.” The Army, however, has assessed the ISV requirement and solution set is in alignment, Herrick said. The DOT&E report, he said, “indicates a desire to include more equipment than a standard nine-soldier squad would carry on a 72-hour mission.” This lack of space, the report stated, “may create a logistics and operational burden” and might limit the type of missions and duration for ISVs. The soldiers that participated in the touch point evaluating the vehicles were asked to bring their Advanced Combat Helmet and Improved Outer Tactical Vest with plates; individual weapon; night vision devices; and ruck with three days' worth of supplies, Herrick said. “All vendors' ISVs are cramped and soldiers cannot reach, stow, and secure equipment as needed, degrading and slowing mission operations,” the report explained. During tests “soldiers on all ISVs could not readily access items in their rucksacks without stopping the movement, dismounting, and removing their rucksacks from the vehicle.” The soldier touch point took into account soldier comfort, visibility and ability to execute the mission, Herrick said. This was all factored into the Army's decision to choose GM Defense's vehicle. “Additionally, no current or planned combat or tactical vehicle allows access to rucksacks while moving to support operator safety,” Herrick noted. “Crew spaces on the ISV are designed to allow mission performance of specific duty tasks.” Units also lacked reliable communication capability, according to the report, using hand-held or manpack radios between 62 and 300 miles. The ISV does not have a mounted radio requirement. “Communication between the squad leader, soldiers, and the platoon leader was intermittent and not reliable,” the report found. Because of the concept of the ISV providing an effective aid to insert soldiers into combat operations, the requirements support just what the soldier carries, so there is no mounted requirement yet, Herrick said. That requirement could be added as a growth capability later. The DOT&E report also noted that the ISV doesn't have an underbody and ballistic survivability requirement, which could mean the unit would be susceptible to certain threats, but the ISV's speed as well as its small, low profile might help deal with those issues. Adding protection to the vehicle would sacrifice the speed the squad needs to rapidly inject itself into operations. Overall, GM Defense's vehicle had the highest reliability among the three vendors, demonstrating 585 mean miles between operational mission failures. The Army's user requirement is 1,200 mean miles for that situation. Herrick noted that reliability and maintainability testing was not scheduled or conducted by Army Test and Evaluation Command or the program office, so the calculations used in the DOT&E report were “not supported by traditional [reliability and maintainability] RAM elements, such as scoring conferences and time for the vendor to implement changes.” The mileage accumulated and referenced in the report was “not meant to evaluate RAM by the Army, but rather to provide the program office and contractor an initial insight on the capability of the system over 500 miles,” Herrick added. The vehicle's RAM testing is scheduled to begin this month, he added.. The service wasn't able to evaluate every aspect of the vehicle before moving into production, but it plans to test the vehicle's ability to be carried by a Chinook during its initial operational test and evaluation this year. Now that the Army has chosen the GM Defense vehicle, it has already initiated developmental testing that will lead to an initial operational test and evaluation in August 2021 at Fort Bragg, North Carolina. That testing began in November 2020. https://www.defensenews.com/land/2021/01/25/infantry-squad-vehicle-is-a-cramped-ride-but-army-says-it-meets-requirements/

  • What the Army’s TITAN program means to multidomain operations

    June 11, 2020 | International, C4ISR

    What the Army’s TITAN program means to multidomain operations

    Nathan Strout For a little more than one year, Brig. Gen. Rob Collins served as the program executive officer for Intelligence, Electronic Warfare and Sensors (IEW&S), where he was responsible for ensuring the soldier can detect, recognize and identify the enemy. Collins' vast portfolio included airborne and terrestrial sensors, position, navigation and timing devices, biometric solutions, and the TITAN ground station program, which will take data from aerial, terrestrial and space sensors to distribute essential data to shooters. The officer has a long career working in this arena: he previously served as project manager for the Army's Distributed Common Ground System and before that as product manager for the Warfighter Information Network-Tactical (WIN-T) Increments 2 and 3. On June 1, Collins officially took over as the new head of the Army's Program Executive Office – Command, Control and Communications (Tactical) where he will oversee the Army's network modernization efforts and work with the network cross functional team at Army Futures Command. In May, during his final days at PEO IEW&S, Collins talked to C4ISRNET's Nathan Strout about his approach to acquisitions, how the Army fits into Joint All Domain Command and Control, and the legacy he'll leave at the program office. This interview has been edited for clarity and length. C4ISRNET: How has your office helped the Department of Defense's shape its approach to Joint All Domain Command and Control? COLLINS: Enhancing deep sense and linking sensor to shooter is fundamental to our Army multi-domain operations concept, and really, the future of large-scale ground combat operations. And specifically for our PEO, we've been active partners in JADC2 efforts, working closely with our network (cross functional team) and our PEO C3T partners and the Assured Position Navigation and Timing cross functional-team in particular and the ISR task force at large, which is led by the G2. We're working on integrated architectures, multi-functional sensors that are integrated within the network for both [data] transport and mission command, and really solutions that are tailored to meet the unique requirements of our Army ground force. And when I say that, [I meant that they are] really at scale and they can meet the mobility requirements of our ground force. We operate at a scale and at an expeditionary mobile fashion which makes the Army a little bit unique. I'll tell you the collaborations that we've embarked upon with the [program officers] really assisted in some common design principles and components to assist in interoperability and really enabling sensor to shooter. Most recently within the PEO, we really helped the Army with some deep sensing ground stations — TITAN circuits if you will — that participated in some sensor to shooter threads in a training exercise [outside the continental United States]. So that really informed our approach. Across the PEO moving forward we've identified a lot of collaborative areas for experimentation demonstrations, tech maturity and really focused in on sensor integration and really data — how do we share data best across the battlefield? C4ISRNET: From the outside, it seems like TITAN will be an essential piece to the entire JADC2 concept, especially for the Army. How are you approaching redundancy and survivability to that system? COLLINS: TITAN is certainly a significant focus area in the modernization effort. It's a key component for our deep sense capability and really being scalable and expeditionary as an intelligence ground station and supporting commanders across the multi-domain operations battlefield framework. And we're really looking at TITAN to be kind of a LEGO approach that can be tailored based on the echelon it supports. And yes, one of the tenets is that it's going to leverage a multi-layered approach, a robust set of nodes from space, from high-altitude aerial to terrestrial sensors and assist with target nominations and link fires, command and control, informed by all the multi-disciplines of intelligence. And really as it connects all these various feeds, hundreds of thousands of intelligence feeds, it's going to employ artificial intelligence and machine learning to rapidly synthesize that information into meaningful info at the speed of battle —sometimes what we say is time can almost become a weapon in and by itself. Part of the analysis is taking a look at primary and alternate communications, what we call PACE, as part of the design, and I'll tell you TITAN is going to consist of a number of assured communications capabilities designed in the PACE plan, from Beyond Line-of-Sight communications, common tactical network components, direct downlinks, software-defined radios, and other IT and non-IP options that really span the gambit of the security domain. So we understand the criticality of PACE and it's one of these that we'll work closely with our network and APNT CFT partners as we continue to refine and define the concept. C4ISRNET: Speaking more broadly, a key function of JADC2 is being able to network with the other services and pull in their information to your shooters. When you look to the other services, what are the platforms, networks, or developments that you're excited to see feed into TITAN and other Army systems? COLLINS: We're always looking for opportunities to leverage national and other mission partner information, and that can span a number of sense capabilities, certainly within space. We certainly watch all things that are going on within low Earth orbit, capabilities that will provide a lot of opportunity. Across the joint force there are a number of areas — certainly within the Air Force — that have the ability to do deep sense with aerial platforms at altitude, so we watch that closely. And I would just tell you, even in the commercial arena even as far as the geospatial information there is a lot of collect capability. TITAN is really adopting an open systems architecture kind of baked in from the beginning [where it can take data from multiple sources], whether it's a [science and technology] effort — which could come from the Army or another agency — for intelligence warning capability or detect/assess/decide-type capability, or if it's leveraging a mission or national partner capability as I mentioned for deep sense, or really even adopting a commercial capability like geospatial collect or adopting a high performance data platform. C4ISRNET: Leaders at the Space Development Agency frequently note that the Army is the biggest customers for data collected from space. Can you speak a little bit about how you're looking at their architecture and tying into their transport layer? COLLINS: At least on the ISR side, we work closely with many of our partners as we look at opportunities to be able to leverage investments that they're making into the space sense capability, and certainly some of the things we have to be conscious of are the responsiveness to our tactical command. If they have intelligence requirements [we need to be able] to provide those back so we can get the persistent stare or the on demand access that we need for the tactical war fight. We certainly are also aware as we push that information down, some of the impacts that it may have on the Army networks that often operate on disconnected, intermittent, limited bandwidth environments, so to the extent that we can do processing as far forward at the point of collect and sense so we can only distribute the information that's absolutely necessary, we're working those concepts to do that. And that's where the artificial intelligence and machine learning comes into play. C4ISRNET: How have acquisitions changed over the last few years? From the outside we've seen a lot more usage of Other Transaction Authorities across the Department. What is your thinking on OTAs and other acquisition vehicles? COLLINS: We have really adapted our acquisitions — now more than ever — using more agile and more tailored acquisition approaches. Each endeavor, each capability that we go to pursue, often has a unique set of circumstances such as the technology maturity, the types of requirements, the types of things that we need to integrate—even our intellectual property approaches. Now more than ever, we've got multiple pathways on the acquisition approach that we can pursue: tailoring traditional, pursuing mid-tier, there's now software pathways, and there's always quick reaction and engineering change proposals to existing programs. So there's a number of different approaches, and I would tell you, too, our ability to involve soldiers in the operational feedback and operational perspective in the process is also kind of new and something that we've really underscored as part of the process. That starts not only from the requirements process, but how we include them in our source selection to assessing soldiers' hands-on kit and providing that feedback. OTA is just another tool that we have at our disposal. Certainly, if we need to do a little bit more maturation of prototypes prior to finalizing requirements, the OTA does offer an opportunity to more quickly pursue those prototypes in advance of transitioning into a more traditional FAR-type approach. I think there's a lot of flexibility and we're starting to do our critical thinking to decide how we approach each acquisition, because each acquisition and capability is unique. I'll tell you the other thing that we're really doing too is—where appropriate—exercising a DevOps or DevSecOps type of approach, and really that's where you bring material developer, combat developer, user, interoperability certifier, tester, and even to the extent the accrediter for those approaches, and they're all collectively together so you do things in parallel and you can dramatically speed up the process. Those are a number of things that we are really using at our disposal to move both more rapidly but also more efficiently and effectively. C4ISRNET: How do you incorporate smaller, nontraditional vendors that can bring in solutions? How do you bring more people into the fold, especially in tech hubs like Silicon Valley? COLLINS: We've got a lot of footprints in a lot of these technical hubs ... I would tell you that we've also done a tremendous amount of industry outreach even within the portfolio. I think in my tenure, in about a year I've probably done close to almost 200 industry engagements, and that spans from small, medium and large. And we're continuously trying to encourage and build relationships beyond just the traditionals. It is probably one of the advantages of the OTA that we've got, to be able to attract non-traditionals. I think there's other opportunities that we've got within Small Business Innovative Research-type initiatives that we've pursued, and then also CRADAs, the Cooperative Research and Development (Agreements). So we kind of span the gamut of that and I'll tell you we've got a pretty healthy teaming relationship between us and the [cross functional teams] to be able to get out there and attract that type of non-traditionals that really have a lot of the innovative and forward thinking ideas that we want to bring into our Army. C4ISRNET: We know a lot of the programs at places like PEO IEW&S take years to develop, with multiple PEOs overseeing and influencing different platforms. As you finish out your tenure, what are the milestones, programs you're proud of? COLLINS: First and foremost, I'll depart extremely proud of the people and the mission that the PEO IEW&S portfolio has accomplished and continues to accomplish. I'll tell you one of the unique things about our portfolio is about 50 percent of our programs support overseas operations, and so we do a significant amount of investment of things that are going on abroad. Much of our Army is deployed and so for that I'm extremely proud. I'll tell you the other thing — I think we have established a healthy culture that is ready, that is resilient and adaptive to change. And I think that has certainly been one thing that I'll be proud of, that I think will be a lasting legacy within the organization. We kind of walked in focused on a couple basic attributes. First and foremost, people and leadership was one. Two, exercising acquisition discipline. Three, integrating our kits so it can collectively operate and inform on the battlefield. And then four, really working with our partners and stakeholders. I think in each one of those areas we've made tremendous progress and really established a lot of momentum. Some of the major programmatics moving forward ... the Terrestrial Layer System, I think we've made some good progress there. Missile Defense and Space Systems set the conditions for our future aerial deep sense capability and really tightened kind of the major deep collect and nesting in with a lot of collecting in space and with our national mission partners. And then all of that data coming down to the foundational component are probably some of the big areas where we've established a lot of positive, irreversible momentum that will allow us to move forward on our Army modernization front. C4ISRNET: And as you move over to PEO C3T, what are you excited to tackle there and what lessons will you bring with you from PEO IEW&S? COLLINS: Well, I must admit that I am a signal officer and so I am excited to return to my roots as a network professional. And so I do find very much the network (to be) an exciting endeavor, and so I'm looking forward to getting back and contributing with the team. And I think what I would certainly take with me is that ... I have a better appreciation of the types of information, the types of data, the types of intelligence ... that need to traverse our networks, the type of demands that it puts on the network, the types of speed of service and quality of service and performance that are required to support those users of the network. So I think that's one of the key things that I'll take with me as I get ready to move over and be part of the C3T team, which I'm very excited (about). I've been very thankful for the experience here at the IEW&S team— a phenomenal group of professionals — and I'm excited to continue my Army mission. https://www.c4isrnet.com/battlefield-tech/it-networks/2020/06/09/what-the-armys-titan-program-means-to-multidomain-operations/

  • Belgium flirts with joining FCAS fighter program

    June 16, 2023 | International, Aerospace

    Belgium flirts with joining FCAS fighter program

    Not everyone is pleased that Belgium — a customer of the F-35 Joint Strike Fighter — is eyeing the Future Combat Air System program.

All news