Back to news

March 13, 2024 | International, Land

For Germany’s Scholz, Taurus missiles are a bridge too far in Ukraine

Critics have portrayed the powerful cruise missile as a defining, but lacking, element of German military assistance to Kyiv.

https://www.defensenews.com/global/europe/2024/03/13/for-germanys-scholz-taurus-missiles-are-a-bridge-too-far-in-ukraine/

On the same subject

  • U.S. Air Force Defines Radical Vision For Command And Control

    February 4, 2020 | International, Aerospace, C4ISR

    U.S. Air Force Defines Radical Vision For Command And Control

    By Steve Trimble The U.S. Air Force has released the full, sweeping vision for the Advanced Battle Management System (ABMS), a two-year-old concept that proposes to disrupt modern norms for the service's command-and-control doctrine, military acquisition policy and industrial participation. The newly released ABMS architecture defines not a traditional program of record but 28 new “product lines” divided into six major components. The implementation strategy is not focused around traditional acquisition milestones measured in years, but rather development “sprints” fielding morsels of new capabilities every four months. The rights for much of the technology, including a new radar, communication gateway and software-defined radio, are claimed not by an industrial supplier, but by the Air Force itself. USAF adopts lead systems integrator-like model ABMS architecture built on government ownership The release of the strategy on Jan. 21 comes three weeks before the Air Force plans to release a budget plan that would shift $9 billion over the next five years for a “Connect the Joint Force” initiative. The proposed funding would come from retiring certain capabilities, including aircraft fleets, within the next five years, with a clear implication: The Air Force is willing, if Congress approves, to trade some capability now to obtain the ABMS over time. “I think of it as we're finally building the ‘Internet of Things' inside the military, something that is very overdue,” says Will Roper, assistant secretary of the Air Force for acquisition, explaining the ABMS to journalists during the unveiling of the architecture in the Pentagon. The scale of the project's ambition has evolved since the ABMS was first proposed in 2018. Air Force leaders unveiled the concept two years ago as a replacement for the airborne Battle Management and Command and Control (BMC2) suite on the Northrop Grumman E-8C Joint Stars fleet. By September 2018, Roper first suggested the same technology could be applied to replace the aging fleet of Boeing RC-135 Rivet Joints and, sometime in the 2030s, the Boeing E-3C Airborne Warning and Control System. Those aims remain intact, but the revealed architecture clarifies that the goals of the ABMS are far broader. If the system is fully realized, the Air Force will create a “combat cloud” on a mobile ad hoc network, transposing the Internet of Things model from civilian technology to the battlefield. As a result, the nearly four-decade-old concept of a centralized command-and-control center—either ground-based or airborne—would be swept away by a future, decentralized digital network. Using computer processors and software algorithms instead of humans, machines would identify targets from sensor data, select the weapons and platforms to prosecute the target automatically, and finally notify the human operator when—or, crucially, whether—to pull the trigger. Roper compares the ABMS' effect on command and control to commercial services on a smartphone, such as the Waze app for drivers navigating traffic. Waze is not driven by a human staff monitoring and reporting traffic hazards, who then review each request for directions and customize a recommended route. Instead, Waze harvests traffic and hazard data from its users, while algorithms mine that information to respond to user requests for services. The Air Force's command-and-control system is constructed around the human staff model, but Roper wants to move the entire enterprise to the Waze approach. “If it didn't exist in the world around us, you'd probably say it was impossible,” Roper says, “but it does [exist].” The challenge for the Air Force is to defend and, if successful, execute that vision for the ABMS. The Air Force needs to secure the support of the other armed services, whose participation is vital to extracting the benefits of such a system. Moreover, the Air Force needs to sell the concept to Congress, despite a system that lacks obvious employment connections to specific legislative districts, such as future factory sites and operational bases. Roper acknowledges the problem of building support for an architecture, rather than a platform, such as a new fighter, bomber or ship. “Those are easy things to sell in this town. You can count them,” he says. “But the internet is not something that's easy to count or quantify, even though we're all very aware of its power.” The Air Force has briefed congressional defense committee staffs on the ABMS concept, but some remain skeptical. A Capitol Hill staffer familiar with the ABMS program doubts that other services will support the Air Force's vision. The ABMS model also appears unlikely to be embraced by industry, the staffer says. A key point of Roper's plan requires companies to cede some intellectual property rights on key elements of the ABMS architecture to the Air Force. But the Air Force is not waiting. Development of the ABMS started last year, even before an analysis of alternatives is completed. In December, the service staged the first demonstration of four new capabilities: transmitting data on a low-probability of intercept link via a gateway between stealthy Air Force and nonstealthy Navy fighters; connecting a C-130 to the SpaceX Starlink satellite constellation; demonstrating a cloud-based, command-and-control network up to a “secret” classification level; and setting up an unclassified common operational picture display at a remote command center inside a tent. As the second in the planned series of triannual events, the Air Force plans to stage the next ABMS demonstration in April, this time involving U.S. Space Force, Strategic Command and Northern Command. Roper, an Oxford-trained physicist, has little patience for the military's traditional development process, although he has made exceptions for complex, hardware-driven programs, such as the Northrop Grumman B-21 bomber and the Ground-Based Strategic Deterrent. For most other programs, Roper wants to trickle out new features at Silicon Valley-speed. A common refrain by military acquisition reformers for decades has been to emphasize delivering an incomplete, “80% solution” sooner than waiting for a system that meets each of sometimes hundreds of detailed requirements. However, for Roper the timeline for delivering even an 80% solution in certain cases is far too long. “[We should] covet the 10-15% solutions that take the next step forward,” Roper said. “Because the learning in that step is so valuable to keep the velocity.” To execute the ABMS vision, Roper appointed Preston Dunlap last year as the lead architect. Unlike a traditional program executive officer (PEO), the architect is a role introduced to the Air Force by Roper, who previously in his career served as the chief architect for the Missile Defense Agency. The six components and 28 production lines for the ABMS are spread across multiple program offices, rather than consolidated under a single PEO. Thus, the role of the architect is to define the vision and then shape acquisition schedules as the various technologies reach maturity. Under Dunlap's architecture, the ABMS is built around six components: new sensors feeding databases in a cloud-based computing environment using software-defined radios, with new apps fusing the data into a common operational picture and integrated effects allowing cruise missiles, for example, to automatically retask sensors on other platforms during flight. Among the 28 product lines, the Air Force proposes to own the rights to the radar, software-defined radio and communications gateway. The Air Force's role resembles the lead systems integrator (LSI) model used for a series of largely failed acquisition programs 15-20 years ago, including the Army's Future Combat System and Coast Guard's Deepwater. In this case, however, the LSI is the Air Force, not an industrial supplier. Such an approach is not unprecedented. The Navy is using a similar model to manage the MQ-25A program, with Boeing selected as a subcontractor to deliver the air vehicle and Naval Air Systems Command providing the ground station and integrating both on an aircraft carrier. The gateway used in the first ABMS demonstration in December offers an example, Roper says. “We took a radio system that was actually built in concert with Northrop Grumman and Lockheed Martin to be able to deal with both platforms with the waveforms, and then a Honeywell antenna was able to speak across the frequencies associated with both radio systems,” Roper said. “So we got those three primary vendors working together underneath our government leadership.” https://aviationweek.com/defense-space/us-air-force-defines-radical-vision-command-control

  • NORTHROP AND RAYTHEON TO COMPETE TO BUILD LASER WEAPON FOR SHORT-RANGE AIR DEFENSE

    August 2, 2019 | International, Aerospace

    NORTHROP AND RAYTHEON TO COMPETE TO BUILD LASER WEAPON FOR SHORT-RANGE AIR DEFENSE

    By: Jen Judson WASHINGTON — The U.S. Army has awarded a contract each to Northrop Grumman and Raytheon to build a 50-kilowatt-class laser weapon for Stryker combat vehicles for the Short-Range Air Defense (SHORAD) mission, according to an Aug. 1 statement from the service's Rapid Capabilities and Critical Technologies Office. The two companies will build their respective directed-energy weapons as subcontractors to Kord Technologies. The Rapid Capabilities and Critical Technologies Office, or RCCTO, entered into a $203 million agreement with Kord under the OTA, or other transaction authority, contracting mechanism that is used to rapidly fund the production of prototypes. The contract could increase to $490 million for the delivery of four prototypes. One of the laser weapon systems developed through the OTA could be integrated onto a platoon of four Stryker vehicles in fiscal 2022. But the Army is leaving competition open to any vendors that did not receive an OTA contract to compete using their own internal research and development dollars. The Army is rapidly developing and fielding Manuever-SHORAD vehicles in response to an urgent need in Europe. A year ago, the Army chose Leonardo DRS to integrate a mission equipment package that will include Raytheon's Stinger vehicle missile launcher onto a Stryker as its M-SHORAD capability. General Dynamics Land Systems — which produces the Stryker — will be the platform integrator for the system. The final prototypes will be delivered to the service by the first quarter of FY20. The directed-energy M-SHORAD capability will protect brigade combat teams from unmanned aircraft, helicopters, rockets, artillery and mortars. “The time is now to get directed energy weapons to the battlefield,” Lt. Gen. L. Neil Thurgood, director of hypersonics, directed energy, space and rapid acquisition, said in a statement. “The Army recognizes the need for directed energy lasers as part of the Army's modernization plan. This is no longer a research effort or a demonstration effort. It is a strategic combat capability, and we are on the right path to get it in soldiers' hands.” The award marks progress toward the Army's new strategy for accelerating and fielding directed-energy weapons. The M-SHORAD laser weapon prototypes are part of a technology maturation effort — the Multi-Mission High Energy Laser. The Army is also building a High Energy Laser Tactical Vehicle Demonstrator. While the laser for the demonstrator will be a 100-kilowatt-class laser on a Family of Medium Tactical Vehicles platform — developed by Dynetics and Lockheed Martin — the service aims to develop 250- to 300-kilowatt-class directed-energy weapons. More powerful laser weapon systems will allow the services to protect against rockets, artillery, mortars and drones “as well as more stressing threats,” according to the release. The Army plans to deliver prototypes of approximately that power onto tactical vehicles for the High Energy Laser Indirect Fire Protection Capability to a platoon by FY24. “By teaming with the other services and our industry partners, we will not only save resources, but exponentially increase the power level and get a better system to soldiers faster,” Thurgood said. https://www.defensenews.com/land/2019/08/01/northrop-and-raytheon-to-compete-to-build-laser-weapon-for-short-range-air-defense/

  • The Army and Air Force are finally on the same page with a plan to connect the military. What happens next?

    October 21, 2020 | International, Aerospace, Land, C4ISR

    The Army and Air Force are finally on the same page with a plan to connect the military. What happens next?

    Valerie Insinna and Jen Judson WASHINGTON — After years of sometimes contentious discussions, the Army and Air Force have adopted a plan to work together on what they are now calling Combined Joint All-Domain Command and Control — the idea that all of the U.S. military's sensors and shooters must be able to send data to each other seamlessly and instantaneously. The agreement, signed Sept. 29 by Air Force Chief of Staff Gen. Charles Brown and Army Chief of Staff Gen. James McConville, paves the way for closer collaboration on “mutual standards for data sharing and service interfacing” that will ultimately allow the services to ensure that new communications gear, networks and artificial intelligence systems they field can connect to each other, reducing the risk of incompatibility. But much is still unknown, including the exact nature of the Army-Air Force collaboration and how much technology the services will be willing to share. Army Futures Command and the Air Force's office of strategy, integration and requirements are tasked with leading the joint effort, which will bridge the services' major avenues for CJADC2 experimentation — the Army's Project Convergence and the Air Force's Advanced Battle Management System. Over the next 60 days, the two services will formulate a plan to connect the Project Convergence and ABMS exercises, and ensure data can be transmitted along their platforms, said Lt. Gen. Clinton Hinote, who leads Air Force's strategy office. But that doesn't mean the services are on a path to adopt the same systems architecture, data standards and interfaces. “What the Army and the Air Force are agreeing to is, we're going to be able to see their data, they're going to be able to see our data. And as much as we can, we will come up with common standards,” Hinote said in an Oct. 15 interview. “But even if we can't come up with common standards, we realize that translators are going to be something that will be with us for a long time, and we will build the translators necessary to make sure we can share.” The main point of the discussions was to avoid redundancies, McConville told Defense News on Oct. in a generation, said Army Secretary Ryan McCarthy, who pointed to the formation of the AirLand Battle doctrine in the 1980s as the last time they worked together so intimately on a new war-fighting concept. “I'm very encouraged that we have the Air Staff and the Army Staff investing countless hours,” he said. “We're laying down the path to get there. And it really starts with cloud architecture, common data standards, and command-and-control systems that you can wire together so that they can share information at the speed of relevance. So that whether it's an F-35 [fighter jet] or an artillery battery, they communicate with each other to prosecute enemy targets.” Battle of the AIs The Army's and the Air Force's goals are roughly the same. The services want to be able to take data from any of the services' sensors — whether that's the radar of an E-3 early airborne warning aircraft or the video collected by an MQ-1C Gray Eagle drone — and detect a threat, fuse it with other information coming in from other platforms, use artificial intelligence to provide a list of options to commanders and ultimately send accurate target data to the weapon systems that will shoot it, all in a drastically shortened timeline. Over the past year, the Air Force held three ABMS demonstrations, with the most recent taking place Sept. 15-25 alongside U.S. Indo-Pacific Command's Exercise Valiant Shield. So far, the service has tested out technology that allows the F-35 and F-22 jets to send data to each other despite their use of different waveforms. It also test tech that connects an AC-130 gunship with SpaceX's Starlink constellation, and used a high-velocity projectile shot from a howitzer to shoot down a surrogate cruise missile. All of those demonstrations were enabled by 5G connectivity, cloud computing and competing battle management systems that fused together data and applied machine-learning algorithms. Meanwhile, during the Army's first Project Convergence exercise held in September, the service tested a prototype of the Extended Range Cannon Artillery, fused data through a new system known as Prometheus and used artificial intelligence to recommend options for shooting a target. A Marine Corps F-35 also participated in some tests, receiving targeting information that originated from a satellite, then passing on information from its own sensors to an Army AI system known as FIRES Synchronization to Optimize Responses in Multi-Domain Operations — or FIRESTORM. Joint Army and Air Force experiments could begin as early as March 2021, said Portia Crowe, the chief data officer of the Army's Network Cross-Functional Team at Army Futures Command. Crowe, who spoke during a Oct. 14 webinar hosted by C4ISRNET, did not elaborate on what would be tested. Much of the early collaboration between the Army's Project Convergence and the Air Force's ABMS will likely involve plugging in new technologies from one service and seeing if they can successfully send data to the other's nodes in the experiment, Hinote said. But that won't be “where the magic happens,” he noted. “The magic is going to happen in the flow of information, and then the development of that information into something that looks new” through the use of artificial intelligence. Felix Jonathan, a robotics engineer from Carnegie Mellon University, inputs data into an autonomous ground vehicle control system during Project Convergence at Yuma Proving Ground, Ariz., which took place Aug. 11-Sept. 18, 2020. (Spc. Carlos Cuebas Fantauzzi/U.S. Army) Though Project Convergence and ABMS are still in their infancies, the Army and the Air Force have adopted different philosophies for incorporating machine learning into the “kill chain” — the sensors and weapon systems that detect, identify and prosecute a threat. While the Air Force is largely experimenting with solutions made by contractors like Anduril Industries and Palantir, the Army is mostly relying on government-owned platforms created by government software coders. “One of the things that I see as being an incredibly interesting exercise — I don't know if this will happen this year or next year, but I'm sure it will happen — is let's compare what we were able to do in the government, using government civilians who are coders and who are programming these machine-learning algorithms to come up with the top three actions [to take in response to a given threat],” Hinote said. “And let's compare that to what [private] companies are doing and their intellectual property. And then, if that gives us insight, then what is the business model that we want to propose?” But as those technologies mature, Hinote said, the services must answer difficult doctrinal and technical questions: How much should the government be involved in shaping the responses given by the algorithm, and how does it balance that requirement with industry's ability to move fast? When an AI gives a commander a list of military options, who owns that data? And how can military operators know the underlying assumptions an AI system is making when it presents a threat to commanders and a set of options for countering it? If they don't understand why an AI system is recommending a course of action, should commanders feel comfortable using lethal force? “How do we know enough about the machine learning and algorithms so that their output is useful, but not a surprise to us? And if it is a surprise, how did it get to that surprise? Because if you don't know that, you're going to feel very weird about using it for lethal force,” Hinote said. “Right now we're kind of feeling our way down that path to see how much trust are we going to have in these algorithms, and developing trust is going to be something you're going to see over and over and over in both Project Convergence and ABMS onramps.” Major barriers The Army and the Air Force aren't the only military entities driving to make CJADC2 a reality. The Navy recently launched its own effort — Project Overmatch — and tapped Rear Adm. Douglas Small on Oct. 1 to lead it. Chief of Naval Operations Adm. Michael Gilday has said it is the service's second-most important priority, falling behind only the Columbia-class ballistic missile submarine. Coast Guardsmen simulate interdicting a jammer on a vessel in support of an Advanced Battle Management System experiment in the Gulf of Mexico on Sept. 3, 2020. (Staff Sgt. Haley Phillips/U.S. Air Force) In totality, the U.S. military will have at least three separate CJADC2 initiatives, each fielding their own hardware and software. There are good reasons for each service retaining their own programs, according to Hinote, as each domain presents unique challenges, and each service organizes itself differently to project power on land, at sea or in the air. “The Army has been very concerned over scale. They see each of their soldiers as being a node inside the network, and therefore you could have millions of nodes. And they're very concerned that if this was only Air Force-led, that the scale couldn't be reached — we would not have the ability to plug in all of those soldiers and nodes in the network,” Hinote said, adding that it's a valid concern. He added that the Air Force also has its challenges — namely the difficulty of sending data over long distances, and having to connect aircraft and sensors that may be far away from a target. But the result is three large, complicated acquisition programs that will need billions of dollars in funding — and potentially compete against each other for money. To further complicate the issue, the military's existing funding mechanisms aren't optimized for the fast-paced, iterative experimentation and procurement the services seek. One way to overcome this might involve creating a Pentagon-wide fund for CJADC2, and then split it among the services, Hinote said. Another option might include designating one service as the executive agent, giving that force organizing authority and the power of the purse. But both come with drawbacks. “[There are] different models out there, but none of them seem to really fit,” Hinote said. “And so we have been having talks with especially the appropriations defense [committees on] the Senate and House side on what would it look like for a modern military to buy a capability like this, and what would the taxpayers need for understanding that this is good stewardship. And that has not been decided.” https://www.c4isrnet.com/digital-show-dailies/ausa/2020/10/20/the-army-and-air-force-are-finally-on-the-same-page-with-a-plan-to-connect-the-military-what-happens-next/

All news