Back to news

October 18, 2018 | Local, Naval

Feds aiming to select preferred design for $60B warships by end of month

OTTAWA — Canada's most expensive military project is entering a critical new phase as the government is on the verge of picking its top design for the country's $60-billion fleet of new warships.

Defence insiders say the government wants to select a design by the end of the month from among three options submitted by several of the largest defence and shipbuilding companies in the world.

After that the government and Halifax-based Irving Shipbuilding, which will actually build the 15 new warships, will sit down with the selected bidder to hammer out the final cost and other details.

The stakes will be high for both sides, with hundreds of millions of dollars in play.

There will also be pressure to make up for lost time on a project already running behind schedule even though whatever decisions are taken could have ramifications on the navy — and taxpayers — for decades to come.

"That's part of the tension between moving quickly and making the right choice," said defence analyst David Perry of the Canadian Global Affairs Institute.

The new warships will replace the navy's 12 frigates and three destroyers, the latter of which have already been retired. They will be used for most of this century.

Launched in late 2016, the design competition has been the subject of rampant lobbying and complaints by defence industry players, with numerous revisions to the original request for bids and several deadline extensions.

That was despite defence officials and Irving having previously warned that time is of the essence when it comes to starting construction, and that they want to shave 18 to 24 months off the project.

There have also been questions about Irving's role in the competition, and anger from some companies that British firm BAE was allowed to enter its Type 26 vessel despite the ship having never been built.

BAE and U.S.-based defence giant Lockheed Martin partnered together to propose the Type 26 for the design competition, which is up against separate proposals from Dutch firm Alion and Spanish shipbuilder Navantia.

A joint French-Italian design was disqualified because Paris-based Naval Group and Italian firm Fincantieri, who promised to build the warships faster and for less than anyone else, did not follow the established process for submitting proposals.

One of the big questions heading into the negotiations will be how much the selected design needs to be changed to reflect the navy's needs and how much the navy will have to shift its requirements because changing the design will take more time and money.

Irving has warned that it could be forced to lay off hundreds of employees because of a production gap if work on the warships isn't ready to start by the time it finishes building the navy's new Arctic patrol ships in 2021 or 2022.

Government negotiators are also facing a battle over the amount of intellectual property that the top bidder will be required to hand over, which Ottawa wants so it can operate and maintain the vessels on its own after they are built.

Companies had originally been told that the winner would be required to turn over the full blueprints, but after significant resistance, the two sides agreed that the matter would be negotiated before a contract is awarded.

The government however warned that if the winning ship designer drives too hard a bargain on the intellectual property front they face the risk of officials pulling the plug on talks and moving on to the next company.

Perry said that while there are many challenges ahead before a deal for a design is signed — and before any of the new warships actually get into the water — this is a critical step forward.

"You can't dance until you pick a dance partner," he said.

— Follow @leeberthiaume on Twitter.

Lee Berthiaume, The Canadian Press

https://www.thechronicleherald.ca/news/canada/feds-aiming-to-select-preferred-design-for-60b-warships-by-end-of-month-250594/

On the same subject

  • Some changes made to Canadian fighter jet requirements as new document sent to companies

    June 21, 2019 | Local, Aerospace

    Some changes made to Canadian fighter jet requirements as new document sent to companies

    DAVID PUGLIESE Procurement Canada has provided aerospace firms a new draft version of the requirements for Canada's next generation fighter jet fleet. Some changes have been made in the draft request for proposals document to deal with concerns raised by the companies, according to federal government sources. The requirements for the new Canadian fighter jet originally put emphasis on strategic attack and striking at ground targets during foreign missions, according to federal government procurement documents obtained by Postmedia. While the Liberal government had been highlighting the need to buy the jets to protect Canadian airspace and meet the country's commitments to the U.S.-Canadian North American Aerospace Defence Command, the procurement criteria provided additional weight to those aircraft that can excel at ground attack for overseas operations. That criteria was seen to favour Lockheed Martin's F-35 stealth jet, say those industry representatives allied with Lockheed's rivals in the upcoming $19 billion competition. The evaluation criteria also had less emphasis on sustainability, another plus for the F-35 which has been dogged with high maintenance bills, they added. The latest version of the requirements now eases back somewhat on the ground attack role and puts a little more emphasis on air-to-air scenarios, say sources. Some changes have also been made to provide for more points to companies who can provide a better deal on sustainment of the aircraft. Another change affects the length of time a firm has to meet its industrial benefits associated with its proposal. That has increased from 20 years to 25 years. Pat Finn, the Department of National Defence's procurement chief, has said he wants the final request for proposals for the fighter jets out to industry by mid-July. At this point four aircraft are to be considered. Those include two U.S.-built aircraft, the F-35, and the Super Hornet, and two European planes, the Eurofighter Typhoon and the Gripen. The winning bidder will build 88 jets for Canada. The new aircraft will replace the Royal Canadian Air Force's CF-18s. https://ottawacitizen.com/news/national/defence-watch/some-changes-made-to-canadian-fighter-jet-requirements-as-new-document-sent-to-companies

  • Costs of hearing-related health claims on the rise in Canadian military

    June 22, 2018 | Local, Land

    Costs of hearing-related health claims on the rise in Canadian military

    Safety and situational awareness cited among reasons to not use hearing protection The cost of health claims related to hearing loss among members of Canada's military is rising, due in part to the reluctance of members to wear protective equipment and because the most suitable devices aren't always provided. Explosions, gunfire, engine noise and alarms all contribute to hearing loss among military members. Almost a third of them have chronic hearing problems by the time they retire, according to surveys by Veterans Affairs. A 2016 study obtained by Radio-Canada looked at how to better protect the hearing of members with pre-existing hearing loss, and found that military personnel were reluctant to wear hearing protection. Some of the reasons were: Discomfort. Incompatibility with other head gear. The feeling of isolation that comes with sound dampening. But the biggest reason was that earplugs or whatever other protection device used would impair situational awareness, safety and "interfere with successful completion of the mission," wrote Dr. Sharon Abel, a senior scientist at Defence Research and Development Canada. That has led to increased health costs for the military. The Canadian Forces Health Services Group spent about $890,000 in 2013-14 on health costs related to hearing loss, followed by $937,000 in 2014-2015. In 2015-16, the last year for which data is available, it was close to $1.1 million. Different soldiers, different needs Richard Blanchette, a retired major-general who suffered hearing loss during his years of service, said the Department of National Defence does everything in its power to protect members and it's the responsibility of the members to do their part. Nobody else can do it for them, he told Radio-Canada. Different military members, however, have different issues. Abel's study found while earplugs may reduce the risk of hearing loss for people with normal hearing, they would increase impairment for people with pre-existing hearing loss. Those people would be better served by more specialized protection, she wrote. "Insufficient consideration is given to the selection of devices that will support the auditory tasks being carried out or suit the hearing status of the user." The military has set up an awareness program for its members about hearing loss, said Pierre Lamontagne with Canadian Forces Health Services​. But soldiers remain reluctant to use some of the equipment they may need because it adds to the considerable weight they may already be carrying in the field, he said. Health consequences Lamontagne said he makes recommendations to commanders of the units, but it's the commanders who make the purchases. While about one in five soldiers needs specialized protection for hearing loss, the devices may be purchased based on general rather than individual needs, he said. The consequences of hearing problems are not always recognized because they are invisible, according to Chantal Laroche, a professor of audiology at the University of Ottawa. However, the side-effects — persistent ringing in the ear, for example, or an inability to communicate with others — can cause other serious health problems, including mental health issues, she said. Laroche said that in general, specialized hearing protections can be expensive, but the military should weigh those costs against the amount they are spending on health costs and disability claims. https://www.cbc.ca/news/canada/ottawa/military-hearing-loss-members-reluctant-to-wear-protection-1.4711517

  • The Future Canadian Surface Combatant

    November 5, 2020 | Local, Naval

    The Future Canadian Surface Combatant

    By Captain Christopher Nucci, Royal Canadian Navy November 2020 Proceedings Vol. 146/11/1,413 Canada is pursuing a single class of 15 surface combatants for the Royal Canadian Navy (RCN), unlike some of its allies who are building multiple classes of more specialized ships. A single variant Canadian Surface Combatant (CSC) is better than the project's original vision of two variants based on a common hull (the first a task group command/air-defense version, the other a more general-purpose/antisubmarine warfare version). While all naval force structure is essentially driven by national strategic defense and security interests, a single-class solution is based on three principal factors. First, it fits best for Canada's unique naval requirements shaped by its geography, modest fleet size, and the RCN's operational needs. Second, it optimizes effectiveness now and into the future, while responsibly seeking maximum cost efficiencies. Finally, it is an innovative approach that has only recently become both practical and advantageous because of recent technological developments, such as convergence and digitization. The General Purpose Warship Moment Naval force planning decisions must coexist in harmony with decisions regarding a navy's overall fleet mix of capital ships, “high-end” surface combatants, “low-end” combatants, and submarines—and the roles of each type.1 In particular, surface combatants have historically fulfilled one or two warfare roles, such as antiair and antisubmarine warfare. Until recently, fielding an affordable “general purpose warship” was too difficult to achieve. The technological limitations of the latter half of the 20th century and into the first decade of the 21st imposed inescapable constraints stemming from the necessary physical size and power requirements of electronics and equipment, along with the expensive and challenging integration of the various single-purpose weapons, sensors, communications, and command-and-control arrangements (as well as the operations and maintenance personnel) required for each role. These limitations could only be surmounted by increasing space, weight, crew size, and the commensurate complexity. As a result, many navies introduced multiple classes of surface combatants to handle the different warfare roles, as well as low-end ships (at less cost) to have sufficient numbers of ships available to respond to contingencies. For the RCN, with a small force of submarines and no capital ships, the approach until now followed this pattern, with the Iroquois-class destroyers focused until their divestment on task group command and area air defense and the more numerous Halifax-class frigates acting as more general-purpose/antisubmarine warfare platforms. Canada's allies have had to confront similar considerations. For example, in the United Kingdom, the number of hulls and capabilities of the Type 26 (the CSC's parent design, known as the Global Combat Ship) are directly connected to the planned acquisition of less-capable Type 31 frigates, the existence of Type 45 antiair-warfare destroyers, a larger submarine fleet, and the importance of capital ships, such as Royal Navy aircraft carriers. For Australia (which is also acquiring the Type 26/GCS-derived Hunter-class), the requirement to protect amphibious ships, more submarines in the fleet, and a separate class of air-warfare destroyers are key factors. Different requirements ultimately lead to different priorities and trade-off decisions, and Canada's circumstances are unlike any others. Canada's Geography, Fleet Size, and Operational Requirements Aside from the overall fleet mix, the other considerations for any state's naval force structure are the geographic factors, overall fleet size, and operational requirements. In Canada's case, unique geography includes the bicoastal nature of the RCN's homeports in Victoria, British Columbia, and Halifax, Nova Scotia, and the tricoastal areas of responsibility in the Pacific, Arctic, and Atlantic. Each area is very distant from the others, and therefore any timely maritime response generally must come from the closest base. In other words, when you need a ship from the opposite coast for any unexpected reason, it is a long way to go. So, it is best if all ships are equally capable and allocated more or less evenly among homeports. Similarly, the RCN must consider the long-range nature of its ship deployments—even domestic ones—because of the significant distances to anticipated theaters of operation. A single combatant class that can perform a wide range of tasks while remaining deployed best meets this challenge and provides more options to government when far away from homeport. For example, a CSC operating in the Asia-Pacific region as an air-defense platform for an allied amphibious task group can quickly respond to a requirement to hunt an adversary's submarine, if needed. Similarly, assembling a national naval task group of several multirole CSCs in response to a crisis is much more achievable when the RCN can draw from the whole surface combatant fleet to assign ships at the necessary readiness levels. The alternative may not guarantee a sufficient number of specialized variants needed for the task when the call comes. In other words, if any one ship becomes unavailable to perform a task for any reason, there is more depth available in the fleet to fill the gap and complete the mission. Consequently, having more ships of similar capabilities ensures a higher rate of operational availability, which is especially important with the RCN's relatively modest fleet size. For small fleets, a “high/low” mix of warships or multiple classes of more specialized combatants actually constrains operational availability. Cost-Saving Value While increasing complexity would ordinarily imply increasing cost, a single class of ships can actually present opportunities to increase cost efficiency. First, a single class of ships eliminates duplication of fixed program costs such as design and engineering and, during ship construction, further eliminates additional costs derived from retooling and pausing work in the shipyard between the construction of different classes, while achieving better learning curves and lowering overall costs per unit compared with two shorter construction runs. As each ship enters service, a single ship class in sufficient numbers has dedicated supply chains and more efficiency and equipment availability from the provision of common parts (especially given that two allies are procuring additional ships based on the common Type 26/GCS design.) Higher cost efficiencies in maintenance from labor specialization also can be expected, as well as the ability for more efficient repair training and use of required ship repair facilities and equipment. Furthermore, training costs associated with a single class are reduced through the ability to deliver common training modules to a larger student cohort, while simultaneously allowing for deeper knowledge and specialist personnel development among a larger pool of available crew with common qualifications. This latter point cannot be overstated—crew availability is a key requirement for operational availability, and the efficiencies made possible with a single set of common qualifications and training enables a larger pool of available personnel to deploy and more flexibility for sustained operations at the unit level. It includes Royal Canadian Air Force maritime helicopter crews and embarked unmanned systems specialists, as well as Army, special operations forces, and even Royal Canadian Mounted Police personnel in a law enforcement mission who would require no additional conversion training between classes once familiar with the CSC's modular mission bay arrangement or boat launching procedures. An Opportunity Enabled by Modern Technology Compared with a few decades ago, several recent technological developments are making multirole ships much more practical. Information-age innovation is, in essence, enabling all the potential advantages a single class of surface combatants while minimizing the traditional disadvantages. For example, any operations room or bridge display can now easily show video or data feeds from any sensor, weapon, or software support system—convergence. Likewise, instead of several stand-alone unmanned systems controllers, consoles that can control any of the ship's unmanned air, surface, or subsurface system are becoming available. Widespread digitization has reduced space requirements, while increasing system capability, flexibility, and power and cooling efficiency. This miniaturization allows for smaller components that can fit into smaller spaces. Multifunctionality can now be found in all kinds of components. For example, a single digital beam-forming radar can replace multiple traditional radars, software-defined radios can support different communications requirements on the fly, programmable multipurpose weapons can engage more than one kind of target but be fired from a common vertical launcher, and decoy launchers can now deploy a variety of defensive munitions. Multifunctionality even extends beyond individual systems to encompass features like the CSC's modular mission bay—a reconfigurable space able to accommodate and integrate any containerized payload imaginable. With an air-transportable, container-based set of payloads, embarking additional specialized equipment or capabilities into a deployed ship during an overseas port visit can be done in just a few days. These developments enable a single ship to rapidly transition to and execute many naval roles while defending itself against a myriad of threats. Although a ship's overall capacity (e.g., the desired number of crew accommodated, missiles embarked, unmanned systems carried, endurance and seakeeping performance, etc.) will still be constrained by its size, a single ship class can have a full range of capabilities. The CSC balances multirole capabilities with a modest amount of capacity. For example, it has one main gun and 32 vertical-launch cells, one helicopter, one mission bay, one multifunction radar, and the ability to embark approximately 204 personnel for crew and mission personnel. Further technological development and additional advantages will accrue from operating a single ship class, such as those from software development and data analytics. For example, the analysis of detailed technical data, such as system-error codes, from across the entire class in near-real time enables the efficient updating of control software to improve cyber security. Or, consider the ability to perform virtual research and development work on a digital twin of a physical system, such as a gas turbine, to examine performance limitations without risking the equipment itself. Data analytics performed on the same system when a part fails can help determine which sensors are critical and what patterns are early indicators of impending failure. This will allow the crew to perform preventive maintenance before the system fails catastrophically and should prevent failures in the other ships of the class. In a connected world, it is even possible to rapidly and remotely inject operational capability enhancements to deployed ships. Ultimately, the relative ease with which the software elements of a combat system can be changed will allow ships of the same class a greater capability to act and react with agility, the most efficient way to maximize potential for a relatively small fleet. Acknowledging the unique Canadian geographical and operational requirements, the imposed limitations on naval force structure, and the need to maximize the RCN's effectiveness while seeking cost efficiencies calls for a single class of surface combatant—the current CSC project. Canada will benefit from this innovative solution for decades. The RCN is well-positioned to make the most of this new platform and the inherent flexibility and multirole capabilities it will bring. The Canadian government's decision to move forward with the CSC program as a single surface combatant class is not only eminently feasible, but also the most sensible for the situation we face. https://www.usni.org/magazines/proceedings/2020/november/future-canadian-surface-combatant

All news