Back to news

May 4, 2018 | International, Aerospace

DIUx wants drones that are out for blood

By:

For drone delivery to make sense, with existing capabilities of drones, the cargo needs to be relatively light, it needs to have tremendous value, and it needs to urgently travel the last mile by air. This is why, to the extent we've seen drones used for delivery in the wild, it's more likely as a means to carry contraband into a prison than it is a practical alternative to the postal service.

But there's one other cargo that fits the description, and that's blood itself.

Defense Innovation Unit Experimental, the Pentagon's stand-up Silicon Valley-focused acquisition house, is looking for a drone that can carry a modest cargo of blood, through the dark of night toward where it's most needed. Call it “Dronesferatu.”

From FCW:

The specs of the solicitation from the Defense Innovation Unit Experimental -- the ability to deliver a 5-pound package over 100 kilometers in “austere environments” -- strongly suggest that they're looking at an unmanned aerial vehicle system that supports refrigeration or other means of temperature control.

“These deliveries, ideally automated, will provide essential items to critically wounded military personnel as quickly as possible after an injury occurs,” the April 23 solicitation states. “Ability to sustain a very high frequency of operations over an extended period of time is critical. Speed of delivery, reliability and robustness to failure and interference, response time, and overall delivery throughput are critical.”

Getting the right blood to the right people as fast as possible means saving lives. To that end, DARPA's funded research into metabolic rate reduction to see if there's a way to make people bleed out more slowly, or into using female hormones to similarly prolong the survivable time without transfusion. In 2013, the U.S. Army conducted a study on pre-hospital transfusion for battlefield casualties being medically evacuated in Afghanistan, and in 2012 Canadian Blood Services even tested the viability of paratroopers transporting blood for transfusion.

Consider blood drones complementary to this field of work. Early tests by researchers at Johns Hopkins and Uganda's Makerere University proved that small vials of blood transported by drone were just as viable as blood transported by car. Those same researchers followed up with a test of blood delivery from ship-to-shore, for possible use in response to coastal areas hit by natural disasters, where the roads are impassable but drones could still safely fly. The American startup Zipline demonstrated its own blood delivery drones in 2016, and has for a year and a half worked on delivering blood by robot to parts of Rwanda.

DIUx's ask, that a drone fly over 60 miles and carry 5 pounds of blood, is not far off from what Zipline's drones can already do, with the company stating a range of 100 miles and a cargo capacity of just under four pounds. Weight and range tradeoffs are at the heart of aviation design, so it's likely that vendors have already pitched something within the bounds of the solicitation. Should that drone make a fast turnaround from ask to prototype to useful tool, the troops fighting abroad may gain a better shot at surviving otherwise-fatal blood loss. Unlikely that the reverse-vampire drones will look like bats, though.

https://www.c4isrnet.com/unmanned/2018/05/03/diux-wants-drones-that-are-drones-out-for-blood/

On the same subject

  • Washington must act to build capable federal cybersecurity workforce

    September 9, 2022 | International, C4ISR

    Washington must act to build capable federal cybersecurity workforce

    As technology and adversary techniques advance, so do the technical skills required by the federal workforce at all levels

  • Textron buys ground robot manufacturer Howe & Howe

    October 26, 2018 | International, Land

    Textron buys ground robot manufacturer Howe & Howe

    By: Aaron Mehta WASHINGTON — Textron Systems has announced its intention to purchase Maine-based Howe & Howe Technologies, a developer of robotic land vehicles, in a move Textron says will position the company to be a “global leader” in autonomous systems. The purchase, which does not have an announced price tag, is expected to close in mid-December. It comes as industry around the world eyes the potential military unmanned ground vehicles market as an area for future growth. Howe produces a number of systems in use by the U.S. government, including the small Ripsaw Super Tank and the RS2-H1 SMET, which was down-selected to compete to be the U.S. Army's platoon load-carrying robot. The company also produces a pair of firefighting unmanned systems, the Thermite and Bulldog. While having some experience in the ground-based unmanned sector, Textron Systems has largely focused on UAVs. Hence, adding Howe's ground systems expertise to its portfolio makes economic sense, said Textron Systems head Lisa Atherton in a company statement. She called Howe the “original disruptors in the advanced robotic vehicle space.” “Textron Systems is now positioned to be a global provider of unmanned capabilities across all three domains. We are clear on the U.S. military's vision and their future technology needs for autonomy, robotics and unmanned systems,” she added. “Bringing together Textron Systems' and Howe & Howe's talent, capabilities and proven products will join two of the best, and we are excited at the idea of advancing the industry even further as one team.” Michael Howe, president of Howe & Howe Technologies, added that “the deep experience and forward thinking of Textron Systems, coupled with the innovation and sheer competitiveness of Howe & Howe, will make for a formidable combination. We expect that the whole will be immeasurably greater than the sum of our parts and will be positioned to forge the 21st century world leader in ground robotics and mobility.” The Pentagon set aside $429 million for unmanned ground systems in fiscal 2019, doubling in just two years from $212 million in FY17 and $310 million in FY18. And while explosive ordnance disposal systems still represent the biggest spending from the Army in this arena, it will likely be overtaken by programs such as the Army Common Robotic Systems and Robotic Ground System Advanced Technology Development. https://www.defensenews.com/industry/2018/10/25/textron-buys-ground-robot-manufacturer-howe-howe

  • Understanding Warfighter Performance from the Inside Out

    January 23, 2019 | International, Land

    Understanding Warfighter Performance from the Inside Out

    Measuring Biological Aptitude (MBA) aims to identify, understand, and monitor in real time the biology that underlies success in specialized roles A new program out of DARPA's Biological Technologies Office could help the Department of Defense enhance and sustain military readiness both by revolutionizing how troops train, perform, and recover, and by mitigating shortages of highly qualified candidates for extremely specialized roles. The anticipated outputs of the Measuring Biological Aptitude (MBA) program are a set of biomarkers — measurable indicators of biological processes — that correspond to traits of highly effective performance in a given role, along with new tools to measure and report on those biomarkers in real time. This information will enable individual warfighters to understand and affect the underlying biological processes that govern their success. MBA technologies could improve training, team formation, mission performance, and post-mission recovery, yielding a better prepared, more effective, more resilient force. At its core, MBA seeks to shed light on the biological factors and processes that support peak performance in each of a set of military specializations. The research will work backwards from phenotypes — that is, how an individual's fixed genetic code expresses as externally observable cognitive, behavioral, or physical traits — and attempt to establish the biological mechanisms that translate underlying genetic makeup into phenotypic traits. At present, those mechanisms of translation — also known as expression circuits — are largely a mystery. MBA researchers will develop new assays and technologies to monitor and report on the biomarkers that reveal the activity of key expression circuits. “With existing technology scientists are able to read out genotype and measure and observe certain aspects of phenotype. Most of what happens in between is a black box,” said Eric Van Gieson, the MBA program manager. “DARPA believes that the information inside the box — these expression circuits — can be predictive of how an individual will respond to a given stimulus or scenario, and more importantly, we believe it will help inform the individual on how to improve their performance throughout their career.” Researchers supporting MBA will initially analyze samples and other data collected from high-performing troops across select military specializations to identify biological signatures of successful performance in each of those roles and determine how they can be measured. For instance, maintaining a lowered heart rate during combat is a valuable trait and easily measured with existing wearable technology. Adaptable problem solving, resilience, and cognitive flexibility are extremely valuable, but less easily measured. MBA analyses should reveal an array of such traits and the expression circuits responsible for them. If DARPA succeeds, the resulting MBA system could support military readiness in various ways. The first improvement relates to how the military initially evaluates recruits and subsequently develops candidates for specialized roles. Many of these roles currently suffer from shortages of qualified candidates, even as more pervasive use of complex technologies and an expanding set of mission profiles are increasing demand for uniquely skilled personnel. For at least the past 50 years, initial assessment of military service members has remained essentially unchanged, comprising a basic medical screening, a standardized physical readiness test, and a written test known as the Armed Services Vocational Aptitude Battery (ASVAB) for enlisted personnel. Scores on the ASVAB feed into the preliminary determination of an individual's qualification for certain military occupational specialties. As a service member's career advances, future placement into other roles does not follow a prescribed protocol and can be based in large part on subjective measures. Against this backdrop, MBA technology could increase the objectivity of the criteria used by military selection committees, remove biases, and raise the baseline of performance for incoming recruits. Additionally, by taking biology into account, the results from MBA measurements could reveal to individuals career options that might not be apparent based on commonly accepted, externally observable traits alone. The second improvement ties to training, both before and after an individual pursues a military career. MBA technology could allow a user to assess his or her personal potential for specialized roles and proactively nurture the traits that are characteristic of successful performers. “Genotypes are fixed, but phenotypes are not. Biology is fundamentally adaptable, and that is the key to enabling performance improvements,” Van Gieson said. “What we're planning to deliver with MBA is a set of continuously updated information that empowers individuals to track their progress throughout their careers and quickly identify what aspects of training and preparation are the most productive.” Third, during missions commanders could employ real-time reporting of changes in service members' biomarkers to inform how a military operation unfolds, adding a layer of biological awareness to provide a more complete assessment of the mission space. Commanders could shift resources or adjust strategies and tactics based on how squad members are performing. Following a mission, biomarker reporting could likewise guide recovery practices and indicate potential health issues. The overall MBA program will be informed by consultations with independent expert advisors in the ethical, legal, social, and regulatory aspects of the work, with particular emphases on privacy, data protection, and responsible utilization of data by individuals. MBA performer teams will be required to provide medical guidance as part of any human study through an embedded genetic counselor, sports therapist, or similar specialist. “Human beings are extremely complex, and although we expect to gain valuable new insights by measuring biology, we also understand that people are not locked into predetermined fates,” Van Gieson explained. “Any breakthroughs we achieve in the MBA program will necessarily be used to address shortages in critical roles by expanding opportunities, not limiting them. If we can provide people with information on their unique biology, and empower them to affect and measure gains in key traits, we'll have opened career pathways that they may not have previously considered.” DARPA will hold a Proposers Day on February 12, 2019, in Arlington, Virginia, to provide more information about MBA and answer questions from potential proposers. For details of the event, visit https://go.usa.gov/xEZeT. A forthcoming Broad Agency Announcement will include complete program objectives, schedules, and metrics. Team should have experience in human performance, phenotyping, multi-scale biology, physiology, biomarker detection and tracking, device development, and various other aspects that will be specified in the announcement. https://www.darpa.mil/news-events/2019-01-22a

All news