Back to news

October 7, 2019 | International, Aerospace

DARPA wants a robotic satellite mechanic launched by 2022

By:

The Defense Advanced Research Projects Agency is on track to announce a new commercial partner for its robotic servicing payload by the end of the year, with plans to have a spacecraft in orbit in 2022.

“I'm standing here with a smile on my face. The program is moving forward and things are looking good and we're very hopeful,” Joe Parrish, program manager for the Robotic Servicing of Geosynchronous Spacecraft program at DARPA, said at the 2019 Global Satellite Servicing Forum Oct. 1. “We're looking to launch RSGS in late 2022.”

RSGS is intended to deliver a GEO spacecraft with a payload consisting of two large 2 meter arms and a number of tools that will allow it to perform maintenance and other work on satellites in GEO. The spacecraft will perform four main functions in space: inspection, orbital adjustments, anomaly resolution and installation of self-contained payloads.

With a host of cameras onboard, RSGS will be able to inspect other satellites. This can help operators on the ground diagnose problems and inform in-orbit repairs. It can also use its arms to capture a satellite and move it, either to a new orbit or to dispose of it. DARPA envisions RSGS being able, again using its arms, to install new payloads on existing satellites, replacing legacy hardware and augmenting its mission for years to come. And, of course, RSGS will be available to traverse the GEO landscape to help satellites that fail to deploy correctly.

“If somebody launches up into GEO while we're up there and a solar array fails to deploy or a reflector or antenna fails to deploy, we can come galloping to the rescue,” said Perrish. “The benefit is not to demonstrate robot arms waving around in space. The benefit is to increase the resilience of our infrastructure in space.”

While DARPA is developing the payload with robotic arms, according to Parrish, DARPA needs a commercial partner to build the spacecraft that will house the payload and carry it around in orbit.

“We're looking for the partner to provide the spacecraft bus — so using a heritage GEO bus that may have had some tailoring for RSGS requirements, integrating the payload and the spacecraft bus together, procuring and launching that integrated spacecraft to GEO, and then providing mission control center for operations for a long period of time,” explained Parrish.

Parrish said that the full project would be turned over in due time to the commercial partner to operate RSGS for fun and profit.

But DARPA has hit some stumbling blocks in securing that commercial partner.

In 2017, Orbital ATK sued DARPA to stop it from developing what it saw as competition to its own satellite servicing space vehicle. While that effort failed, the company's efforts to develop its own satellite servicing program have continued. Orbital ATK was acquired by Northrop Grumman in 2018, and now the Northrop Grumman subsidiary SpaceLogistics is preparing to launch the first satellite life extension vehicle into space in the coming weeks.

Then, in January, Maxar Technologies' Space Systems Loral pulled out of an agreement with DARPA to build the spacecraft to host the RSGS payload as the company moved out of the GEO construction market.

DARPA has spent much of the last year working to find a new commercial partner. In May they hosted a Proposer's Day to discuss the program with potentially interested companies, and now Parrish says they expect to announce a partner toward the end of the year.

“2019 has been quite a year,” said Parrish. “We are still in source selection for a new commercial partner.”

Meanwhile, work on the payload itself is ongoing.

The first of two flight robotic manipulator arms is in final assembly and will be shipped to the Naval Research Lab in the next two weeks, where it will be integrated into the payload. The second arm lags the first by about two months, said Parrish, and is currently in assembly.

In 2020, all of the components of the payload will be sent to NRL for assembly into the actual payload.

https://www.c4isrnet.com/battlefield-tech/space/2019/10/03/darpa-wants-a-robotic-satellite-mechanic-launched-by-2022/

On the same subject

  • GKN Aerospace franchit une étape importante avec la première rotation du moteur RM16 dans le banc d'essai.

    October 27, 2022 | International, Aerospace

    GKN Aerospace franchit une étape importante avec la première rotation du moteur RM16 dans le banc d'essai.

    GKN Aerospace a achevé avec succès le premier tour moteur du moteur RM16 de pointe qui équipera le JAS 39 Gripen E. Cette étape importante permet à GKN Aerospace de fournir un support produit RM16 complet aux forces armées suédoises, garantissant ainsi la disponibilité du moteur pour les futures missions des forces aériennes suédoises.

  • 5 things you should know about the US Navy’s new frigate

    May 7, 2020 | International, Naval

    5 things you should know about the US Navy’s new frigate

    By: David B. Larter WASHINGTON — The U.S. Navy selected Fincantieri's FREMM design for its next-generation frigate, but as with most new platforms it will be a long time before the first ship hits the fleet. The contract, awarded May 30, is for up to 10 hulls constructed at Fincantieri's Marinette Marine shipyard in Wisconsin. The Navy intends to buy at least 20 frigates. Here's what we know about what the years ahead will hold: 1) The price tag. According to Assistant Secretary of the Navy for Research, Development and Acquisition James Geurts, the first hull will cost $1.281 billion, which includes the design money for both the ship and for the work needed at the shipyard to set up a production line. It also includes all the government-furnished equipment, including things such as Raytheon's AN/SPY-6-derivative radar and Lockheed Martin's Aegis Combat System. Of that $1.281 billion, $795 million will go to the shipyard. The next hulls in the buy should cost significantly less. The Navy is aiming for a price tag of $800 million in 2018 dollars, with the threshold at $950 million. But Geurts thinks he can beat both numbers. An independent cost estimate found the follow-on hulls should cost about $781 million if all 20 are built. “The study shows this ship as selected and the program as designed delivering underneath our objective cost per platform,” Geurts said on a May 30 phone call with reporters. 2) The timeline. Detailed design of the future frigate, known as FFG(X), starts right away, Geurts said, and construction will begin no later than April 2022. The first ship should be delivered in 2026 and should be operational by 2030, with final operational capability declared by 2032, Geurts said. The contract should be wrapped up — all 10 hulls — by 2035. The intention is to buy 20 hulls, though it's unclear whether Marinette will build all 20 or if the Navy will identify a second source. 3) What could go wrong? The Navy feels like it did a lot to get this ship deal right, which could be argued was important given a not-so-hot track record with programs lately. Improving the Navy's performance on lead ships, in the wake of the Ford-class debacle, has been a focus of Senate Armed Services Committee Chairman Jim Inhofe, R-Okla. Among the steps the Navy took to retire risk with FFG(X) was to adapt many of the mature systems being designed for the Flight III destroyer program, including the latest version of the Aegis Combat System and a scaled-down version of the AN/SPY-6 radar destined for Flight III. “Some of those efforts are still maturing, such as SPY-6, but from my standpoint I'm very comfortable with how that's proceeding,” said Rear Adm. Casey Moton, program executive officer of unmanned and small combatants. Bringing industry in on the process earlier will also help reduce risk in the lead ship, Moton said. “In general, even before the solicitation went out, the fact that we had industry involved in the conceptual design phase, they were there with us in the requirements; they understood the specifications; we worked with them on cost reduction. Many of the things that tend to trip up lead ships, we took proactive steps to reduce the risk there.” 4) Room to grow. The Navy considered the ability to add new, energy intensive systems on to the ship later in its calculus in selecting FREMM as the FFG(X), according to service officials. During the competition, Fincantieri highlighted that it could fairly easily grow the electrical capacity of the ship, and that all the major computer and engine gear could be swapped out without cutting a hole in the ship, as is often necessary with current classes in the U.S. Navy's inventory. Rick Hunt, a retired Navy three-star admiral who is now a senior Fincantieri executive, told reporters that the company's bid was designed to meet the cost specifications while giving the Navy room to upgrade. “Be flexible in what you do right now, surge to more capacity as soon as we get that [requirement] and be able to grow the ship in lot changes should you need something even greater in the future,” Hunt said. Vice Adm. Jim Kilby, the Navy's top requirements officer, said growth will be important in Navy designs as the service seeks to move away from combating missiles with other missiles. “Understanding how fast the threat is advancing made the service-life allowance so important for us,” Kilby said May 30. “We didn't want [to] define discretely where we are going in the future, so having some margin to include things like directed energy and other systems, that's why it was so important. “We have an extensive laser [science and technology] program in the Navy, we have lasers on some of our ships now. We definitely view it as a requirement for the future as we move into a realm where our launchers are reserved for offensive weapons and our point defense systems are these rechargeable magazines that we can sustain for long periods of time.” 5) Lessons learned. The Navy acquisitions boss feels good about the process that produced the FFG(X) award and thinks it can be a model for other programs. “FFG(X) represents an evolution in the Navy's requirements and acquisition approach, which allowed the acquisition planning, requirements and technical communities along with the shipbuilders to develop requirements for the platform ahead of the release of the detailed design and construction request for proposal," Geurts said. “By integrating the requirements, acquisition planning and design phases, we were able to reduce the span time by nearly six years as compared to traditional platforms. All this was done with an intense focus on cost, acquisition and technical rigor so we got the best value for the war fighter and the taxpayer. It's the best I've seen in the Navy thus far in integrating all the teams together, and it's a model we're building on for future programs.” But it's unclear if a similar approach would work on a clean-sheet, new design the same way it worked for FFG(X), which uses already-developed technologies and a parent design. “Having all the folks in the room early in the process helped move the process along and move it along faster,” said Bryan McGrath, a retired destroyer captain who is now a consultant with The Ferrybridge Group. “The question comes when you consider how applicable duplicating such an effort would be if you were trying to do a clean-sheet design that was incorporating revolutionary technologies, untested technologies, perhaps even undeveloped technologies. That's a different story.” The FFG(X) will be a considerable step forward for the Navy in terms of capability, but isn't exactly a revolutionary platform that may require a different process to arrive at a solution, McGrath said. https://www.defensenews.com/naval/2020/05/05/5-things-you-should-know-about-the-us-navys-new-frigate/

  • Orizzonte Sistemi Navali signs €1.5 billion contract for two “FREMM EVO” frigates for the Italian Navy

    July 31, 2024 | International, Land

    Orizzonte Sistemi Navali signs €1.5 billion contract for two “FREMM EVO” frigates for the Italian Navy

    The “FREMM EVO” frigates will be fitted with highly dependable equipment, relying on robust maintenance plans to ensure their readiness for action, with high levels of operational availability.

All news