Back to news

December 31, 2018 | Local, Aerospace

Criteria for “Boeing clause” in fighter jet competition to be outlined in the new year

DAVID PUGLIESE, OTTAWA CITIZEN

In October, the Canadian government sent out its draft request for proposals to aerospace firms expected to bid on replacing the CF-18 fighter jets.

The aircraft that are being considered in this competition are Lockheed Martin's F-35, the Eurofighter Typhoon, Saab's Gripen and the Boeing Super Hornet.

The aerospace companies will provide feedback on the draft request for proposals and after that is received the final RFP will be issued and bids required by May 2019.

Industry is expected to provide feedback on a number of issues, including the so-called “Boeing clause.”

The Canadian government has introduced the change to the standard procurement process with a new provision that defence analysts say was aimed directly at Boeing. The move came after the U.S. firm complained to the Trump administration that its Quebec-based competitor Bombardier was receiving unfair Canadian government subsidies on the production of its C-Series civilian passenger aircraft. The U.S. ruled in favour of Boeing, resulting in Bombardier facing duties of almost 300 per cent on sales of its C-Series planes in America.

The Liberal government retaliated against Boeing's complaint by cancelling plans to buy 18 of the company's Super Hornet fighter jets at a cost of around $6 billion. In addition, as part of the competition for the new fighter jets, Canada announced it would assess a company's “economic behavior” in the years leading up to the competition. Navdeep Bains, the Minister of Innovation, Science and Economic Development, said if a firm has caused economic harm to Canada that would be at a distinct disadvantage in the fighter jet competition.

But the Canadian government hasn't yet outlined its criteria for the controversial clause. Jeff Waring, director general for industrial benefits policy at Innovation, Science and Economic Development Canada recently told Esprit de Corps military magazine that the federal government is “still finalizing the assessment tool” for that clause and will continue to discuss the issue with industry.

The details for the clause will be outlined before the final request for proposals is issued, he added.

https://ottawacitizen.com/news/national/defence-watch/criteria-for-boeing-clause-in-fighter-jet-competition-to-be-outlined-in-the-new-year

On the same subject

  • Federal government considering delaying acceptance of bids for new fighter jets

    May 6, 2020 | Local, Aerospace

    Federal government considering delaying acceptance of bids for new fighter jets

    David Pugliese • Ottawa Citizen Publishing date: 21 hours ago • 3 minute read The federal government is looking at once again delaying acceptance of bids on new fighter jets. The bids were originally supposed to be submitted in May 2019 but that was pushed back to March 30 this year. That deadline, in turn, was pushed back to June 30 at the request of the aerospace industry, Public Services and Procurement Canada announced in February. But now the department is once again evaluating a request from industry to further extend that deadline for the proposals, Procurement Canada spokesman Marc-André Charbonneau confirmed in an email to this newspaper. “We remain committed to providing members of the Royal Canadian Air Force with the fighter aircraft they need to do their jobs, and ensuring the best possible value for Canadians,” he added. “This procurement is a once in a generation opportunity to support the growth of Canada's aerospace and defence industries for decades to come.” If that happens it is unclear on how the current timetable for buying the fighter jets, to replace the CF-18 aircraft, might be affected. A winning bidder was to have been chosen in 2022. The first aircraft would have been delivered by 2025, according to the government's schedule. Industry representatives say they expect the bid submissions to be pushed back at least until the end of the summer. The federal government is focused on dealing with its response to the novel coronavirus pandemic and Public Services and Procurement Canada is deeply involved in setting up procurements of protective gear and medical supplies. It has also been difficult for companies to collect and provide the necessary classified information to the federal government that is needed for the bids. Much of that has to be delivered directly to government officials and cannot be transmitted over the internet because of the sensitivity of the information. The fighter jet competition was launched on Dec. 12, 2017 and at this point three aircraft are to be considered. Those include the F-35, the Super Hornet, and the Gripen. The program is expected to cost around $19 billion and will see the purchase of 88 new jets. Information about how Canada intends to evaluate the jets is limited. But Public Services and Procurement Canada has noted that technical merit will make up the bulk of the assessment at 60 per cent. Cost and economic benefits companies can provide to Canada will each be worth 20 per cent. But Canada won't conduct a fly-off between fighter jets competing to become the country's new warplane nor conduct testing to see how such aircraft perform under cold weather conditions, Public Services and Procurement Canada confirmed earlier this year. Concerns have been raised by Lockheed Martin's rivals that the competition has been designed to favour the F-35. This newspaper reported last year the requirements for the new jets put emphasis on strategic attack and striking at ground targets during foreign missions. That criteria is seen to benefit the F-35. In addition, the federal government changed criteria on how it would assess industrial benefits after the U.S. government threatened to pull the F-35 from the competition. The Conservative government had previously selected the F-35 as the air force's new jet but backed away from that plan after concerns about the technology and growing cost. During the 2015 election campaign, Justin Trudeau vowed that his government would not purchase the F-35. But at the same time, Trudeau stated his government would hold an open competition for the fighter purchase. The Liberal government backed away from its promise to freeze out the F-35 and the aircraft is now seen as a front-runner in the competition as it has many supporters in the Royal Canadian Air Force. Many of Canada's allies plan to operate the plane. Canada is a partner in the F-35 program and has contributed funding for the aircraft's development over the years. It has already made its latest payment on that program. https://ottawacitizen.com/news/national/defence-watch/federal-government-considering-delaying-acceptance-of-bids-for-new-fighter-jets/wcm/2c331c83-e437-45d8-8d1c-9be59ccb7dc3/

  • Canadian Army credits Liberals for TAPV instead of Conservatives - new roles for vehicle added

    February 14, 2019 | Local, Land

    Canadian Army credits Liberals for TAPV instead of Conservatives - new roles for vehicle added

    There seems to be some revisionism underway in the Canadian Army about the Tactical Armoured Patrol Vehicle (TAPV) program as well as changes to the role of the wheeled vehicle. When it was originally announced part of the stated goal of the TAPV was to take on the role of reconnaissance, with 193 of the vehicles being a reconnaissance variant that would replace the Army's Coyote vehicle. The remaining 307 TAPVs would serve as armoured personnel carriers for battlefield troop transportation, according to the Army. In addition, the $1.2 billion project, when it was announced in 2012, was clearly part of the Conservative government's defence program (The original TAPV plans also emerged under the Conservatives in 2008/2009). The situation has changed in the meantime. The Army says it is expanding the role of the vehicle. The TAPV is being assigned to headquarters and military police units for use as protected and mobile transport. It will be used as well for command and control, VIP transport and patrolling. As for the more sophisticated reconnaissance capability fielded by the Coyotes, the Army notes that it has the new LAV 6 and its Reconnaissance Surveillance System (LRSS) Project. “The remaining Coyote fleet will be divested upon the fielding of the LAV 6.0 LRSS which are expected to be delivered in 2021 and 2022,” it added in an email to Postmedia. As for the TAPV project, as pointed out below in the Army Facebook posting last year, that program is now being credited to the Liberal government and its Strong, Secure and Engaged defence policy. https://ottawacitizen.com/news/national/defence-watch/canadian-army-credits-liberals-for-tapv-instead-of-conservatives-new-roles-for-vehicle-added

  • The Future Canadian Surface Combatant

    November 5, 2020 | Local, Naval

    The Future Canadian Surface Combatant

    By Captain Christopher Nucci, Royal Canadian Navy November 2020 Proceedings Vol. 146/11/1,413 Canada is pursuing a single class of 15 surface combatants for the Royal Canadian Navy (RCN), unlike some of its allies who are building multiple classes of more specialized ships. A single variant Canadian Surface Combatant (CSC) is better than the project's original vision of two variants based on a common hull (the first a task group command/air-defense version, the other a more general-purpose/antisubmarine warfare version). While all naval force structure is essentially driven by national strategic defense and security interests, a single-class solution is based on three principal factors. First, it fits best for Canada's unique naval requirements shaped by its geography, modest fleet size, and the RCN's operational needs. Second, it optimizes effectiveness now and into the future, while responsibly seeking maximum cost efficiencies. Finally, it is an innovative approach that has only recently become both practical and advantageous because of recent technological developments, such as convergence and digitization. The General Purpose Warship Moment Naval force planning decisions must coexist in harmony with decisions regarding a navy's overall fleet mix of capital ships, “high-end” surface combatants, “low-end” combatants, and submarines—and the roles of each type.1 In particular, surface combatants have historically fulfilled one or two warfare roles, such as antiair and antisubmarine warfare. Until recently, fielding an affordable “general purpose warship” was too difficult to achieve. The technological limitations of the latter half of the 20th century and into the first decade of the 21st imposed inescapable constraints stemming from the necessary physical size and power requirements of electronics and equipment, along with the expensive and challenging integration of the various single-purpose weapons, sensors, communications, and command-and-control arrangements (as well as the operations and maintenance personnel) required for each role. These limitations could only be surmounted by increasing space, weight, crew size, and the commensurate complexity. As a result, many navies introduced multiple classes of surface combatants to handle the different warfare roles, as well as low-end ships (at less cost) to have sufficient numbers of ships available to respond to contingencies. For the RCN, with a small force of submarines and no capital ships, the approach until now followed this pattern, with the Iroquois-class destroyers focused until their divestment on task group command and area air defense and the more numerous Halifax-class frigates acting as more general-purpose/antisubmarine warfare platforms. Canada's allies have had to confront similar considerations. For example, in the United Kingdom, the number of hulls and capabilities of the Type 26 (the CSC's parent design, known as the Global Combat Ship) are directly connected to the planned acquisition of less-capable Type 31 frigates, the existence of Type 45 antiair-warfare destroyers, a larger submarine fleet, and the importance of capital ships, such as Royal Navy aircraft carriers. For Australia (which is also acquiring the Type 26/GCS-derived Hunter-class), the requirement to protect amphibious ships, more submarines in the fleet, and a separate class of air-warfare destroyers are key factors. Different requirements ultimately lead to different priorities and trade-off decisions, and Canada's circumstances are unlike any others. Canada's Geography, Fleet Size, and Operational Requirements Aside from the overall fleet mix, the other considerations for any state's naval force structure are the geographic factors, overall fleet size, and operational requirements. In Canada's case, unique geography includes the bicoastal nature of the RCN's homeports in Victoria, British Columbia, and Halifax, Nova Scotia, and the tricoastal areas of responsibility in the Pacific, Arctic, and Atlantic. Each area is very distant from the others, and therefore any timely maritime response generally must come from the closest base. In other words, when you need a ship from the opposite coast for any unexpected reason, it is a long way to go. So, it is best if all ships are equally capable and allocated more or less evenly among homeports. Similarly, the RCN must consider the long-range nature of its ship deployments—even domestic ones—because of the significant distances to anticipated theaters of operation. A single combatant class that can perform a wide range of tasks while remaining deployed best meets this challenge and provides more options to government when far away from homeport. For example, a CSC operating in the Asia-Pacific region as an air-defense platform for an allied amphibious task group can quickly respond to a requirement to hunt an adversary's submarine, if needed. Similarly, assembling a national naval task group of several multirole CSCs in response to a crisis is much more achievable when the RCN can draw from the whole surface combatant fleet to assign ships at the necessary readiness levels. The alternative may not guarantee a sufficient number of specialized variants needed for the task when the call comes. In other words, if any one ship becomes unavailable to perform a task for any reason, there is more depth available in the fleet to fill the gap and complete the mission. Consequently, having more ships of similar capabilities ensures a higher rate of operational availability, which is especially important with the RCN's relatively modest fleet size. For small fleets, a “high/low” mix of warships or multiple classes of more specialized combatants actually constrains operational availability. Cost-Saving Value While increasing complexity would ordinarily imply increasing cost, a single class of ships can actually present opportunities to increase cost efficiency. First, a single class of ships eliminates duplication of fixed program costs such as design and engineering and, during ship construction, further eliminates additional costs derived from retooling and pausing work in the shipyard between the construction of different classes, while achieving better learning curves and lowering overall costs per unit compared with two shorter construction runs. As each ship enters service, a single ship class in sufficient numbers has dedicated supply chains and more efficiency and equipment availability from the provision of common parts (especially given that two allies are procuring additional ships based on the common Type 26/GCS design.) Higher cost efficiencies in maintenance from labor specialization also can be expected, as well as the ability for more efficient repair training and use of required ship repair facilities and equipment. Furthermore, training costs associated with a single class are reduced through the ability to deliver common training modules to a larger student cohort, while simultaneously allowing for deeper knowledge and specialist personnel development among a larger pool of available crew with common qualifications. This latter point cannot be overstated—crew availability is a key requirement for operational availability, and the efficiencies made possible with a single set of common qualifications and training enables a larger pool of available personnel to deploy and more flexibility for sustained operations at the unit level. It includes Royal Canadian Air Force maritime helicopter crews and embarked unmanned systems specialists, as well as Army, special operations forces, and even Royal Canadian Mounted Police personnel in a law enforcement mission who would require no additional conversion training between classes once familiar with the CSC's modular mission bay arrangement or boat launching procedures. An Opportunity Enabled by Modern Technology Compared with a few decades ago, several recent technological developments are making multirole ships much more practical. Information-age innovation is, in essence, enabling all the potential advantages a single class of surface combatants while minimizing the traditional disadvantages. For example, any operations room or bridge display can now easily show video or data feeds from any sensor, weapon, or software support system—convergence. Likewise, instead of several stand-alone unmanned systems controllers, consoles that can control any of the ship's unmanned air, surface, or subsurface system are becoming available. Widespread digitization has reduced space requirements, while increasing system capability, flexibility, and power and cooling efficiency. This miniaturization allows for smaller components that can fit into smaller spaces. Multifunctionality can now be found in all kinds of components. For example, a single digital beam-forming radar can replace multiple traditional radars, software-defined radios can support different communications requirements on the fly, programmable multipurpose weapons can engage more than one kind of target but be fired from a common vertical launcher, and decoy launchers can now deploy a variety of defensive munitions. Multifunctionality even extends beyond individual systems to encompass features like the CSC's modular mission bay—a reconfigurable space able to accommodate and integrate any containerized payload imaginable. With an air-transportable, container-based set of payloads, embarking additional specialized equipment or capabilities into a deployed ship during an overseas port visit can be done in just a few days. These developments enable a single ship to rapidly transition to and execute many naval roles while defending itself against a myriad of threats. Although a ship's overall capacity (e.g., the desired number of crew accommodated, missiles embarked, unmanned systems carried, endurance and seakeeping performance, etc.) will still be constrained by its size, a single ship class can have a full range of capabilities. The CSC balances multirole capabilities with a modest amount of capacity. For example, it has one main gun and 32 vertical-launch cells, one helicopter, one mission bay, one multifunction radar, and the ability to embark approximately 204 personnel for crew and mission personnel. Further technological development and additional advantages will accrue from operating a single ship class, such as those from software development and data analytics. For example, the analysis of detailed technical data, such as system-error codes, from across the entire class in near-real time enables the efficient updating of control software to improve cyber security. Or, consider the ability to perform virtual research and development work on a digital twin of a physical system, such as a gas turbine, to examine performance limitations without risking the equipment itself. Data analytics performed on the same system when a part fails can help determine which sensors are critical and what patterns are early indicators of impending failure. This will allow the crew to perform preventive maintenance before the system fails catastrophically and should prevent failures in the other ships of the class. In a connected world, it is even possible to rapidly and remotely inject operational capability enhancements to deployed ships. Ultimately, the relative ease with which the software elements of a combat system can be changed will allow ships of the same class a greater capability to act and react with agility, the most efficient way to maximize potential for a relatively small fleet. Acknowledging the unique Canadian geographical and operational requirements, the imposed limitations on naval force structure, and the need to maximize the RCN's effectiveness while seeking cost efficiencies calls for a single class of surface combatant—the current CSC project. Canada will benefit from this innovative solution for decades. The RCN is well-positioned to make the most of this new platform and the inherent flexibility and multirole capabilities it will bring. The Canadian government's decision to move forward with the CSC program as a single surface combatant class is not only eminently feasible, but also the most sensible for the situation we face. https://www.usni.org/magazines/proceedings/2020/november/future-canadian-surface-combatant

All news