Back to news

June 2, 2020 | International, Naval

All aboard the Sea Train!

Imagine the following scenario.

Four medium-sized U.S. Navy vessels depart from a port along the United States' coast. There's no crew aboard any of them.

About 15 nautical miles off the coast, the four vessels rendezvous, autonomously arranging themselves in a line. Using custom mechanisms, they attach to each other to form a train, except they're in the water and there's no railroad to guide them. In this configuration the vessels travel 6,500 nautical miles across the open ocean to Southeast Asia. But as they approach their destination, they disconnect, splitting up as each unmanned ship goes its own way to conduct independent operations, such as collecting data with a variety of onboard sensors.

Once those operations are complete, the four reunite, form a train and make the return journey home.

This is the Sea Train, and it may not be as far-fetched as it sounds. The Defense Advanced Research Projects Agency is investing in several technologies to make it a reality.

“The goal of the Sea Train program is to be able to develop and demonstrate long-range deployment capabilities for a distributed fleet of medium-sized tactical unmanned vessels,” said Andrew Nuss, DARPA's program manager for Sea Train. “So we're really focusing on ways to enable extended transoceanic transit and long-range naval operations, and the way that we're looking to do that is by taking advantage of some of the efficiencies that we can gain in a system of connected vessels — that's where the name ‘Sea Train' comes from.”

According to DARPA, the current security environment has incentivized the Navy and the Marine Corps to move from a small number of exquisite, large manned platforms to a more distributed fleet structure comprised of smaller vessels, including unmanned platforms that can conduct surveillance and engage in electronic warfare and offensive operations.

While these unmanned vessels are smaller and more agile than their large, manned companions, they are limited by the increased wave-making resistance that plagues smaller vessels. And due to their size, they simply can't carry enough fuel to make the long-range journeys envisioned by DARPA without refueling.

By connecting the vessels — physically or in a formation — the agency hopes the Sea Train can reduce that wave resistance and enable long-range missions.

In February, the agency released a broad agency announcement to find possible vendors. Citing agency practice, Nuss declined to share how many proposals were submitted, although he did say there was significant interest in the announcement. The agency completed its review of any submissions and expects to issue contracts by the end of the fiscal year.

Sea Train is expected to consist of two 18-month periods, where contractors will work to develop and test technologies that could enable the Sea Train concept. The program will culminate with model testing in scaled ocean conditions.

If successful, DARPA hopes to see the technologies adopted by the Navy for its unmanned platforms.

“What we're looking to do is be able to reduce the risk in this unique deployment approach,” Ness said. “And then be able to just deliver that set of solutions to the Navy in the future, to be able to demonstrate to them that there is, potentially, a new way to deploy these vessels, to be able to provide far more operational range without the risk of relying on actual refueling or in-port refueling.”

And while DARPA's effort is focused on medium-sized unmanned vessels — anywhere from 12 to 50 meters in length — the lessons learned could be applied to larger or smaller vessels, manned or unmanned.

https://www.c4isrnet.com/unmanned/2020/06/01/all-aboard-the-sea-train/

On the same subject

  • Thales Alenia Space wins two contracts from ESA to study future upgrades to Europe’s EGNOS Navigation System

    May 20, 2020 | International, Aerospace, C4ISR

    Thales Alenia Space wins two contracts from ESA to study future upgrades to Europe’s EGNOS Navigation System

    Cannes, May 18, 2020 – The European Space Agency (ESA) has awarded two contracts to Thales Alenia Space, the joint company between Thales (67%) and Leonardo (33%), concerning EGNOS (European Geostationary Navigation Overlay Service). These contracts, fully financed under the European Commission H2020 programme concern study phases on the system evolution. They will call on Thales Alenia Space's expertise as program prime contractor for over 25 years to study and develop upgrades for the EGNOS satellite navigation system. The first contract concerns possible upgrades for EGNOS aeronautical services, designed to improve performances in order to increase landing safety under limited visibility conditions (from current CAT-I to CAT-II), over the current EGNOS footprint, focused on Europe. The second contract will study changes required to extend its aeronautical services worldwide. Based on state-of-the-art technologies, this upgrade will call on the A-RAIM (Advanced Receiver Autonomous Integrity Monitoring) concept and the global coverage of the Galileo satnav constellation. RAIM is an already deployed technology that assesses the integrity of signals in the receivers that are part of a global positioning system, mainly GPS. Galileo will now be incorporated in the advanced version of this concept, A-RAIM, to provide enhanced horizontal guidance performance, not possible with RAIM using only GPS. The new concept would thus provide “safety of life” aeronautical services, including approaches with vertical guidance, thanks to inputs from GPS and Galileo via EGNOS. “Today's contracts are key for satellite navigation in Europe and bolster Thales Alenia Space's European leadership in state of art satellite navigation systems, including Safety of Life services”, said Benoit Broudy, head of the Navigation business at Thales Alenia Space in France. He added: “Our successes on export markets, as in South Korea, validate our innovative approach that allows us to offer increasingly powerful and agile solutions to meet the evolving requirements of customers from around the world.” About EGNOS EGNOS, a European Union flagship program, is a satellite navigation system designed to improve positioning signals delivered by GPS. Developed by Thales Alenia Space as prime contractor, EGNOS was first deployed in 2005, began operating in open service mode in 2009 and provided Safety of Life service starting in 2011. The GNSS R&D activities are financed by the European Commission H2020 programme. They are managed by the European Space Agency through a delegation agreement from the European Commission. Safety of Life service, a success in export markets The EGNOS Safety of Life service is used to carry out precision airport approaches, especially landings, without requiring ground guidance systems. Building on its expertise in this field, Thales Alenia Space won a contract in 2016 from the Korean space agency to supply the Korean Augmentation Satellite System (KASS). With its Safety of Life capability, KASS is a regional Korean navigation system that will initially be used for aviation. It will provide critical services at several points of each flight, especially landing, so that, airports no longer need ground landing aid facilities. Along the same lines, in early 2019 ASECNA, the air navigation safety agency for Africa and Madagascar, chose Thales Alenia Space to handle a Phase B project that will include the supply of a pre-operational service in 2020 for a Satellite Based Augmentation System (SBAS) in sub-Saharan Africa, to provide an optimized satellite-based solution to support the growing air traffic in this region. The project recently took a major step forward, with validation of the system's architecture and main performance characteristics. This study is being carried out jointly by ASECNA and Thales Alenia Space, with funding from the European Union, as part of an ambitious program to develop the aviation sector in Africa. Set for completion by the end of the year, it also includes the supply of a pre-operational service, along with demonstrations of how to use the service in conjunction with partner airlines. Thales Alenia Space has now completed acceptance testing of the demonstrator, which will subsequently be deployed at various sites. ABOUT THALES ALENIA SPACE Drawing on over 40 years of experience and a unique combination of skills, expertise and cultures, Thales Alenia Space delivers cost-effective solutions for telecommunications, navigation, Earth observation, environmental management, exploration, science and orbital infrastructures. Governments and private industry alike count on Thales Alenia Space to design satellite-based systems that provide anytime, anywhere connections and positioning, monitor our planet, enhance management of its resources, and explore our Solar System and beyond. Thales Alenia Space sees space as a new horizon, helping to build a better, more sustainable life on Earth. A joint venture between Thales (67%) and Leonardo (33%), Thales Alenia Space also teams up with Telespazio to form the parent companies' Space Alliance, which offers a complete range of services. Thales Alenia Space posted consolidated revenues of approximately 2.15 billion euros in 2019 and has around 7,700 employees in nine countries. www.thalesaleniaspace.com THALES ALENIA SPACE – PRESS CONTACTS Sandrine Bielecki Tel: +33 (0)4 92 92 70 94 sandrine.bielecki@thalesaleniaspace.com Catherine des Arcis Tel: +33 (0)4 92 92 72 82 catherine.desarcis@thalesaleniaspace.com Marija Kovac Tel: +39 (0)6 415 126 85 marija.kovacsomministrato@thalesaleniaspace.com View source version on Thales: https://www.thalesgroup.com/en/worldwide/space/press-release/thales-alenia-space-wins-two-contracts-esa-study-future-upgrades

  • Anduril Industries in talks with Australia on autonomous undersea vehicle

    May 6, 2022 | International, Naval

    Anduril Industries in talks with Australia on autonomous undersea vehicle

    The company billed the Extra Large Autonomous Undersea Vehicle as affordable, durable and capable of executing military and non-military missions.

  • Bradley Replacement: Army Risks Third Failure In A Row

    October 8, 2019 | International, Land

    Bradley Replacement: Army Risks Third Failure In A Row

    With the surprise disqualification of the Raytheon-Rheinmetall Lynx, the Army has effectively left itself with one competitor for the Optionally Manned Fighting Vehicle, General Dynamics -- unless the Pentagon or Congress intervene. By SYDNEY J. FREEDBERG JR. WASHINGTON: Experts fear the Army has undermined a top priority program, the Optionally Manned Fighting Vehicle, by disqualifying one of the only two remaining competitors for not delivering its prototype on time. “I cannot believe that is the reason,” said a baffled Thomas Spoehr, a retired three-star who headed the Army's program analysis & evaluation office. There must be, he told me this morning, some more profound problem driving this decision: “Nobody wants to have this major program go forward with only one competitor.” The news was broken by our colleague Jen Judson on Friday and confirmed to us by several sources. The Army declined official comment. Manufacturer Rheinmetall could not physically ship their Lynx-41 prototype from Germany to the US — which is strange, since they've managed to do so before — by the October first deadline. While some Army officials were willing to offer them an extension, the recently created Army Futures Command refused. That leaves General Dynamics, offering an all-new design we describe below, as the sole competitor for the Engineering & Manufacturing Design (EMD) contract to be awarded early next year. A crucial caveat: Winning EMD does not guarantee General Dynamics will win the production contract, which will be awarded in 2023 in a competition open to all comers. But any 2023 contender would have to refine their design at their own expense, without the constant feedback from the Army that comes with being on the EMD contract. That's a hard risk for a board to justify, given GD's advantage. And without a second competitor, all the Army's eggs are in the basket of GD succeeding, with no backup. “I strongly suspect that [General Dynamics] has done a great job of tailoring a solution, developed over time through successes in other programs, for exactly what the US Army wants,” as expressed in roughly 100 detailed and rigid requirements, said George Mason scholar Jim Hasik. But, he said, that doesn't mean what the Army thinks it wants is the right solution, or that GD will deliver on budget and schedule. “I would prefer that two or three contractors were proceeding to some trials of truth at Aberdeen in some months,” Hasik told me. “I do not single out GDLS; I just expect lower likelihood of success in non-competitive contracting. Any given bid may have problems of which even the bidder does not know.” The timing of this news is particularly painful for the Army, because thousands of soldiers, contractors, and media will be heading to Washington for next-week's huge Association of the US Army conference. One of the highlights of last year's show was the Lynx prototype. Why? Disqualifying the Lynx doesn't make sense, said Spoehr, who as head of national defense studies at the Heritage Foundation has long urged the Army to replace its M2 Bradley troop carrier and other 1980s-vintage armored vehicle designs. “I have to believe the Army will take another look at this situation,” Spoehr said. Or, maybe not. The decision to disqualify the Rheinmetall-Raytheon team for missing the deadline is arguably, “the correct one when you consider schedule is the priority,” an industry source told me. But maybe schedule shouldn't be the priority, the source went on, because the current timeline — fielding the first combat-ready unit by 2026 — doesn't permit much innovation. “The vehicle they are asking for will not be significantly better than the current Bradley.” (General Dynamics disputes this hotly, not surprisingly, as we detail later in this story). “I think the Army is pretty short-sighted,” the industry source said. “Personally, I don't see how the program survives in future budgets.” Even before this news broke, skeptical Senate appropriators had already cut funding for Army Next Generation Combat Vehicles in their draft of the defense spending bill, although the House has not. But with the Hill so roiled by impeachment that it's unclear legislators will even be able to pass the annual defense bills — which were already headed for closed-door conferences in any case — we've not been able to get any but the most noncommittal comment from Congress. We'll update this story or write a sequel when we hear from the Hill. The underlying anxiety here is that the Army has tried and failed repeatedly to modernize its Reagan-era arsenal over the past 30 years — the problem Army Futures Command was created to fix. Armored fighting vehicle programs, above all replacements for the Bradley troop carrier, have been particularly fraught. The Future Combat Systems family of vehicles, which included a lightweight Bradley replacement, was canceled in 2009, while the Ground Combat Vehicle, a better-armored and correspondingly heavier Bradley replacement, was cancelled in 2014. The Optionally Manned Fighting Vehicle is the Army's third swing at this ball. That puts tremendous pressure on Army Futures Command and General Dynamics to deliver. Their balancing act is to make something different and better enough it's worth replacing the Bradley instead of just upgrading it again, without taking on so much new technology that the program risks major delays and overruns. The Army's modernization director for Next Generation Combat Vehicles, Brig. Gen. Richard Ross Coffman, spoke to me Friday just before the news broke about Rheinmetall. While he didn't speak to the number of competitors, he did emphasize that a company that doesn't win an Engineering & Manufacturing Design contract can still compete for Low-Rate Initial Production. “The LRIP award is FY23,” Coffman said. “That's a free and open competition. So let's say you didn't have the time or didn't feel you had the money ... to compete starting on 1 October, you can further mature your product, you can test that product, and then enter back in to the competition in '23.” We Have A Winner (By Default)? Assuming General Dynamics does win the production contract in 2023, what will their vehicle look like? It will not resemble the Griffin III concept vehicle that vied with the Lynx on the floor of last year's Association of the US Army mega-conference, company officials told me. In fact, they said, the GD OMFV shares no major components with the ASCOD/Ajax lineage of combat vehicles, widely used in Europe, on whose proven chassis and automotive systems GD build its Griffin series, including its offering for the Army's Mobile Protected Firepower light tank. “The suspension is a totally new design. The engine and transmission are totally different. Drive train is different. Exhaust placement is different,” Keith Barclay, director of global strategy for General Dynamics Land Systems, said in an interview. (The core of the engine is the same as MPF, but not the configuration, cooling, or transmission). That's remarkable because Army leaders had said they were willing to go with a proven, pre-existing chassis to reduce risk, as long as the weapons and electronics were cutting-edge. As with many weapons programs, the Army plans to field OMFV in successively more advanced increments: Increment 1 will only have to meet minimum or “threshold” requirements, while Increment 2 will go after higher “objective” requirements. “One of the problems we had with previous ground vehicle programs was we always tried to reach for technology that wasn't mature,” Coffman told me. “Now we've set the objective to those technologies that are on the cusp of maturation, so that if it does mature ... we can achieve[it] in Increment 2.” Barclay and other GD execs told me this morning that the prototype they just delivered to the Army already meets some of the objective requirements for Increment 2, particularly for the gun and fire control. (They declined to offer more specifics). Meeting those requirements was what drove the all-new design. “It had to be designed from the inside out,” Barclay told me. “Modifying an existing platform would not work.” That said, Barclay went on, this is not new unproven tech. “These are very high Technological Readiness Level (TRL) components that have been through quite a bit of testing, and we've just packaged them and designed them... into a new configuration.” (Of course, “quite a bit of testing” isn't the same as actually being deployed on hundreds of vehicles in Spanish, Austrian, and — soon — British service, as was the case for many of the Griffin's components). While the GD OMFV's components aren't the same as those on the ASCOD/Ajax/Griffin series, they do build on that experience, Barclay said, as well as on decades of General Dynamics R&D for the cancelled FCS and GCV programs. What's New? So what are the innovations in the GD OMFV that make it a significant improvement over an upgraded Bradley? Most visible from the outside is the weapon, the one component the OMFV shares with the Griffin III prototype at AUSA last year. It's a new 50mm quick-firing cannon, largely developed by the Army's Armaments Center, which is many times more powerful than the 25mm on the Bradley or the 30mm weapons on many Russian vehicles. Whereas the Bradley gunner and commander sit in the turret, the OMFV's turret is unmanned, remote-controlled from a well-protected and well-connected crew compartment in the hull. In fact, from the crew's perspective inside the vehicle, the most visible difference will probably be how much better their visibility is. Traditional armored vehicles rely on narrow viewports and periscopic sights, making them half-blind behemoths on the battlefield. But massive investments by the automotive industry — from backup cameras to self-driving cars — have driven down the cost and size of sensors. GD boasts their OMFV design offers “360 degree situational awareness” from cameras all around the vehicle. The sensor feeds are visible from screens at not only the crew stations but in the passenger area, so the infantry can know what kind of situation they may have to clamber out into. Currently, the vehicle is configured for three crew and five infantry soldiers, the same as the Bradley and the Army's minimum requirement for OMFV. (The seats are designed to buffer blasts from mines and roadside bombs). But all eight seats are together in the hull, rather than having some in the turret, and each crew station can control any function, rather than each being specially hard-wired for the commander, gunner, and driver respectively. So GD expects that, as automation technology improves, it'll be possible to go down to just two crewmembers, freeing up a seat for a sixth passenger. That ability to upgrade electronics is perhaps the single most important, if subtle, improvement over the Bradley. Designed in the 1970s and repeatedly upgraded since, the Bradley has repeatedly run into the limits of its electrical system. Troops in Iraq often had to turn equipment on and off because they couldn't run all of it at once. The Army is now increasing the Bradley's power, and they're even retrofitting it with an Active Protection System that uses electricity-hungry radars to detect and shoot down incoming anti-tank missiles. But the OMFV will have Active Protection as standard equipment, rather than tacked on. And the all-new design lets GD build in the power, wiring, and — most crucial — the standardized interfaces (aka a Modular Open Systems Architecture) to make future electronic upgrades much easier, from anti-missile jammers to reconnaissance mini-drones to AI-assisted targeting systems. “We have looked to the future about what power requirements will be,” Barclay told me. Their vehicle, he said, has “electrical power, both high voltage and low voltage, that will allow myriad capabilities that you could not put onto an existing combat vehicle today in the Army's inventory.” https://breakingdefense.com/2019/10/bradley-replacement-army-risks-third-failure-in-a-row

All news