11 juin 2020 | International, C4ISR

What the Army’s TITAN program means to multidomain operations

For a little more than one year, Brig. Gen. Rob Collins served as the program executive officer for Intelligence, Electronic Warfare and Sensors (IEW&S), where he was responsible for ensuring the soldier can detect, recognize and identify the enemy.

Collins' vast portfolio included airborne and terrestrial sensors, position, navigation and timing devices, biometric solutions, and the TITAN ground station program, which will take data from aerial, terrestrial and space sensors to distribute essential data to shooters.

The officer has a long career working in this arena: he previously served as project manager for the Army's Distributed Common Ground System and before that as product manager for the Warfighter Information Network-Tactical (WIN-T) Increments 2 and 3.

On June 1, Collins officially took over as the new head of the Army's Program Executive Office – Command, Control and Communications (Tactical) where he will oversee the Army's network modernization efforts and work with the network cross functional team at Army Futures Command.

In May, during his final days at PEO IEW&S, Collins talked to C4ISRNET's Nathan Strout about his approach to acquisitions, how the Army fits into Joint All Domain Command and Control, and the legacy he'll leave at the program office.

This interview has been edited for clarity and length.

C4ISRNET: How has your office helped the Department of Defense's shape its approach to Joint All Domain Command and Control?

COLLINS: Enhancing deep sense and linking sensor to shooter is fundamental to our Army multi-domain operations concept, and really, the future of large-scale ground combat operations. And specifically for our PEO, we've been active partners in JADC2 efforts, working closely with our network (cross functional team) and our PEO C3T partners and the Assured Position Navigation and Timing cross functional-team in particular and the ISR task force at large, which is led by the G2.

We're working on integrated architectures, multi-functional sensors that are integrated within the network for both [data] transport and mission command, and really solutions that are tailored to meet the unique requirements of our Army ground force. And when I say that, [I meant that they are] really at scale and they can meet the mobility requirements of our ground force. We operate at a scale and at an expeditionary mobile fashion which makes the Army a little bit unique. I'll tell you the collaborations that we've embarked upon with the [program officers] really assisted in some common design principles and components to assist in interoperability and really enabling sensor to shooter.

Most recently within the PEO, we really helped the Army with some deep sensing ground stations — TITAN circuits if you will — that participated in some sensor to shooter threads in a training exercise [outside the continental United States]. So that really informed our approach. Across the PEO moving forward we've identified a lot of collaborative areas for experimentation demonstrations, tech maturity and really focused in on sensor integration and really data — how do we share data best across the battlefield?

C4ISRNET: From the outside, it seems like TITAN will be an essential piece to the entire JADC2 concept, especially for the Army. How are you approaching redundancy and survivability to that system?

COLLINS: TITAN is certainly a significant focus area in the modernization effort. It's a key component for our deep sense capability and really being scalable and expeditionary as an intelligence ground station and supporting commanders across the multi-domain operations battlefield framework. And we're really looking at TITAN to be kind of a LEGO approach that can be tailored based on the echelon it supports.

And yes, one of the tenets is that it's going to leverage a multi-layered approach, a robust set of nodes from space, from high-altitude aerial to terrestrial sensors and assist with target nominations and link fires, command and control, informed by all the multi-disciplines of intelligence. And really as it connects all these various feeds, hundreds of thousands of intelligence feeds, it's going to employ artificial intelligence and machine learning to rapidly synthesize that information into meaningful info at the speed of battle —sometimes what we say is time can almost become a weapon in and by itself.

Part of the analysis is taking a look at primary and alternate communications, what we call PACE, as part of the design, and I'll tell you TITAN is going to consist of a number of assured communications capabilities designed in the PACE plan, from Beyond Line-of-Sight communications, common tactical network components, direct downlinks, software-defined radios, and other IT and non-IP options that really span the gambit of the security domain. So we understand the criticality of PACE and it's one of these that we'll work closely with our network and APNT CFT partners as we continue to refine and define the concept.

C4ISRNET: Speaking more broadly, a key function of JADC2 is being able to network with the other services and pull in their information to your shooters. When you look to the other services, what are the platforms, networks, or developments that you're excited to see feed into TITAN and other Army systems?

COLLINS: We're always looking for opportunities to leverage national and other mission partner information, and that can span a number of sense capabilities, certainly within space. We certainly watch all things that are going on within low Earth orbit, capabilities that will provide a lot of opportunity. Across the joint force there are a number of areas — certainly within the Air Force — that have the ability to do deep sense with aerial platforms at altitude, so we watch that closely. And I would just tell you, even in the commercial arena even as far as the geospatial information there is a lot of collect capability.

TITAN is really adopting an open systems architecture kind of baked in from the beginning [where it can take data from multiple sources], whether it's a [science and technology] effort — which could come from the Army or another agency — for intelligence warning capability or detect/assess/decide-type capability, or if it's leveraging a mission or national partner capability as I mentioned for deep sense, or really even adopting a commercial capability like geospatial collect or adopting a high performance data platform.

C4ISRNET: Leaders at the Space Development Agency frequently note that the Army is the biggest customers for data collected from space. Can you speak a little bit about how you're looking at their architecture and tying into their transport layer?

COLLINS: At least on the ISR side, we work closely with many of our partners as we look at opportunities to be able to leverage investments that they're making into the space sense capability, and certainly some of the things we have to be conscious of are the responsiveness to our tactical command. If they have intelligence requirements [we need to be able] to provide those back so we can get the persistent stare or the on demand access that we need for the tactical war fight.

We certainly are also aware as we push that information down, some of the impacts that it may have on the Army networks that often operate on disconnected, intermittent, limited bandwidth environments, so to the extent that we can do processing as far forward at the point of collect and sense so we can only distribute the information that's absolutely necessary, we're working those concepts to do that. And that's where the artificial intelligence and machine learning comes into play.

C4ISRNET: How have acquisitions changed over the last few years? From the outside we've seen a lot more usage of Other Transaction Authorities across the Department. What is your thinking on OTAs and other acquisition vehicles?

COLLINS: We have really adapted our acquisitions — now more than ever — using more agile and more tailored acquisition approaches. Each endeavor, each capability that we go to pursue, often has a unique set of circumstances such as the technology maturity, the types of requirements, the types of things that we need to integrate—even our intellectual property approaches. Now more than ever, we've got multiple pathways on the acquisition approach that we can pursue: tailoring traditional, pursuing mid-tier, there's now software pathways, and there's always quick reaction and engineering change proposals to existing programs.

So there's a number of different approaches, and I would tell you, too, our ability to involve soldiers in the operational feedback and operational perspective in the process is also kind of new and something that we've really underscored as part of the process. That starts not only from the requirements process, but how we include them in our source selection to assessing soldiers' hands-on kit and providing that feedback.

OTA is just another tool that we have at our disposal. Certainly, if we need to do a little bit more maturation of prototypes prior to finalizing requirements, the OTA does offer an opportunity to more quickly pursue those prototypes in advance of transitioning into a more traditional FAR-type approach. I think there's a lot of flexibility and we're starting to do our critical thinking to decide how we approach each acquisition, because each acquisition and capability is unique.

I'll tell you the other thing that we're really doing too is—where appropriate—exercising a DevOps or DevSecOps type of approach, and really that's where you bring material developer, combat developer, user, interoperability certifier, tester, and even to the extent the accrediter for those approaches, and they're all collectively together so you do things in parallel and you can dramatically speed up the process.

Those are a number of things that we are really using at our disposal to move both more rapidly but also more efficiently and effectively.

C4ISRNET: How do you incorporate smaller, nontraditional vendors that can bring in solutions? How do you bring more people into the fold, especially in tech hubs like Silicon Valley?

COLLINS: We've got a lot of footprints in a lot of these technical hubs ... I would tell you that we've also done a tremendous amount of industry outreach even within the portfolio. I think in my tenure, in about a year I've probably done close to almost 200 industry engagements, and that spans from small, medium and large. And we're continuously trying to encourage and build relationships beyond just the traditionals. It is probably one of the advantages of the OTA that we've got, to be able to attract non-traditionals. I think there's other opportunities that we've got within Small Business Innovative Research-type initiatives that we've pursued, and then also CRADAs, the Cooperative Research and Development (Agreements). So we kind of span the gamut of that and I'll tell you we've got a pretty healthy teaming relationship between us and the [cross functional teams] to be able to get out there and attract that type of non-traditionals that really have a lot of the innovative and forward thinking ideas that we want to bring into our Army.

C4ISRNET: We know a lot of the programs at places like PEO IEW&S take years to develop, with multiple PEOs overseeing and influencing different platforms. As you finish out your tenure, what are the milestones, programs you're proud of?

COLLINS: First and foremost, I'll depart extremely proud of the people and the mission that the PEO IEW&S portfolio has accomplished and continues to accomplish. I'll tell you one of the unique things about our portfolio is about 50 percent of our programs support overseas operations, and so we do a significant amount of investment of things that are going on abroad. Much of our Army is deployed and so for that I'm extremely proud.

I'll tell you the other thing — I think we have established a healthy culture that is ready, that is resilient and adaptive to change. And I think that has certainly been one thing that I'll be proud of, that I think will be a lasting legacy within the organization. We kind of walked in focused on a couple basic attributes. First and foremost, people and leadership was one. Two, exercising acquisition discipline. Three, integrating our kits so it can collectively operate and inform on the battlefield. And then four, really working with our partners and stakeholders. I think in each one of those areas we've made tremendous progress and really established a lot of momentum.

Some of the major programmatics moving forward ... the Terrestrial Layer System, I think we've made some good progress there. Missile Defense and Space Systems set the conditions for our future aerial deep sense capability and really tightened kind of the major deep collect and nesting in with a lot of collecting in space and with our national mission partners. And then all of that data coming down to the foundational component are probably some of the big areas where we've established a lot of positive, irreversible momentum that will allow us to move forward on our Army modernization front.

C4ISRNET: And as you move over to PEO C3T, what are you excited to tackle there and what lessons will you bring with you from PEO IEW&S?

COLLINS: Well, I must admit that I am a signal officer and so I am excited to return to my roots as a network professional. And so I do find very much the network (to be) an exciting endeavor, and so I'm looking forward to getting back and contributing with the team.

And I think what I would certainly take with me is that ... I have a better appreciation of the types of information, the types of data, the types of intelligence ... that need to traverse our networks, the type of demands that it puts on the network, the types of speed of service and quality of service and performance that are required to support those users of the network.

So I think that's one of the key things that I'll take with me as I get ready to move over and be part of the C3T team, which I'm very excited (about). I've been very thankful for the experience here at the IEW&S team— a phenomenal group of professionals — and I'm excited to continue my Army mission.

https://www.c4isrnet.com/battlefield-tech/it-networks/2020/06/09/what-the-armys-titan-program-means-to-multidomain-operations/

Sur le même sujet

  • Deadlines for B-21 Raider and ARCYBER

    3 mars 2021 | International, C4ISR, Sécurité

    Deadlines for B-21 Raider and ARCYBER

    The B-21 Training Systems Innovation Challenge Deadline: WEDNESDAY 3 March 2021 The U.S. Air Force Global Strike Command and Rapid Capabilities Office have launched an innovation challenge on Vulcan focused on the B-21 Raider Training Systems. The results of the challenge will inform USAF decisions on the adoption of innovative solutions that enhance training systems for pilots and maintainers. The challenge is the continuation of a user-centered innovation effort spurred by a multidisciplinary USAF team (incl. end users) and—depending on merit and viability —provides the opportunity to: Engage with a state-of-the-art program and receive direct operator feedback. Be selected for a funded prototype demonstration Be considered for other potential development and/or integration activities beyond initial demonstration. Don't delay your engagement with this challenge. You can continue editing your submission all the way until the deadline next Wednesday 3 March 2021. Submit your innovations in Vulcan U.S. Army Cyber PAI Tools, Analytics, and Visualization Assessment Event (AE) Deadline: TUESDAY 2 March 2021 The U.S. Army Cyber Command (ARCYBER) Technical Warfare Center (TWC), is in search of industry expertise, software integration, analytic development, and data visualization capabilities to allow real-time, near real-time, and historical analysis of publicly available information (PAI). This call is interested in technologies that provide some or all of the following capabilities: Data Acquisition and Storage Data Structuring, Preparation, and Integration Data Analytics Data Visualization Submit your relevant capabilities to ARCYBER Cyber Fusion Innovation Center (CFIC) HERE by next Tuesday 2 March 2021. Review the instructions and be proactive in your submission process in order to increase the effectiveness of your engagement. IT TAKES A NETWORK!

  • B-21 Development Applying Tough Lessons From B-2

    22 août 2019 | International, Aérospatial

    B-21 Development Applying Tough Lessons From B-2

    By Lee Hudson PALMDALE, California— The U.S. Air Force is taking lessons learned from the plagued B-2 Spirit bomber development program and applying them to the next-generation B-21 Raider. While it is unknown when the B-2 will retire, the aging stealth bomber may end up flying alongside the B-21. The B-2 bomber flew its inaugural flight 30 years ago from the Plant 42 runway here. Today, the Northrop Grummansite is preparing for development of the Raider and two newly erected beige buildings have popped up, likely tied to the next-generation bomber. Although technical and acquisition problems inundated B-2 development, the classified B-21 is taking a different approach. Many details remain classified, but the company and service officials acknowledge the team is being run by the Rapid Capabilities Office instead of a traditional program office. B-21 development appears to be progressing; the Air Force's No. 2 officer—Air Force Vice Chief of Staff Gen. Stephen Wilson—has said first flight is slated for December 2021. But House Armed Services seapower and projection forces subcommittee Ranking Member Rep. Rob Wittman (R-Va.) alerted the public last year that there was a problem with the inlet design for the B-21's Pratt & Whitney-manufactured engines. Wittman says those issues were fully addressed and the program has made tremendous progress. “I've been pretty impressed by what both the Air Force and what Northrop Grumman have done in addressing these particular issues and I think we're on the right course,” he says. “Getting those things right to begin with and setting the tone and path I think is critically important.” An Air Force illustration issued in 2016 of the B-21 design suggests it may closely resemble the B-2. “The B-2 will be setting the path course for the B-21,” says Janis Pamiljans, aerospace systems sector president at Northrop Grumman. “What we've learned on B-2 are finding themselves baselined in the design for B-21 for supportability, sustainability, [and] mission capable rate.” The aging B-2s must be overhauled every nine years and are taken off the flight line for up to 12 months. Maintenance includes modifications and upgrades to antenna technology, avionics and software systems, costing U.S. taxpayers an average of $60 million for each aircraft, says Richard Sullivan, vice president and B-2 program manager at Northrop Grumman. Separately, the Air Force is funding the $3 billion B-2 Defensive Management System Modernization (DMS-M) program to enhance the aircraft's direct attack capability and upgrade its integrated air defense systems. The current DMS was designed in the 1980s and has not received any upgrades. “By leveraging ‘state-of-the-art' electronic warfare antennae, processors, controller and displays, B-2 aircrews will realize unprecedented situational battlespace awareness and dynamic, real-time threat avoidance in the most complex radio frequency emitter environments,” the Air Force says. “The inherent increased sensitivity of the modernized DMS over the legacy system, with increased processing power, will build a battlespace picture that could be shared with joint force platforms by onboard communication systems.” DMS-M is facing a possible eight-month delay as the service works with Northrop Grumman to implement an agile software development framework, Air Force acquisition executive Will Roper told lawmakers in March. Engineering and manufacturing development for the effort goes through July 2022, according to fiscal 2020 budget documents. Lawmakers acknowledge it is important that the nation's only operational stealth bomber remain relevant. But the House Armed Services Committee is concerned about DMS-M schedule delays, according to a report accompanying the lower chamber's mark of the fiscal 2020 defense policy bill. “Unless the B-2 DMS-M program makes significant changes, there may continue to be delays that will impact the success of the program,” the report says. The committee directs the Air Force to brief members on sufficient government software development expertise; contract definitization schedule; delivery schedule; determination of software baseline; and an assessment of related DMS-M-related program support. The Senate Armed Services Committee also is asking for answers regarding the U.S. bomber force. The upper chamber is requesting a brief on an updated bomber road map and plans for B-2 life cycle sustainment, among other items, according to a report accompanying the Senate's mark of the fiscal 2020 defense authorization bill. The upper chamber also would require details on Raider basing. To date, the service has been “real[ly] happy with the way Northrop has approached” the B-21 program, says Maj. Gen. James Dawkins, Eighth Air Force commander and overseer of the Joint-Global Strike Operations Center. The next-generation bomber completed a successful critical design review in December. “Everything I hear is that cost, schedule and performance is right on expectations,” Dawkins says. https://aviationweek.com/defense/b-21-development-applying-tough-lessons-b-2

  • French, Turkish naval companies tinker with torpedo interceptors

    10 décembre 2024 | International, Naval

    French, Turkish naval companies tinker with torpedo interceptors

Toutes les nouvelles