17 décembre 2018 | International, C4ISR

US Air Force set to launch 1st next-generation GPS satellite

By:

DENVER — After months of delays, the U.S. Air Force is about to launch the first of a new generation of GPS satellites, designed to be more accurate, secure and versatile.

But some of their most highly touted features will not be fully available until 2022 or later because of problems in a companion program to develop a new ground control system for the satellites, government auditors said.

The satellite is scheduled to lift off Tuesday from Cape Canaveral, Florida, aboard a SpaceX Falcon 9 rocket. It's the first of 32 planned GPS III satellites that will replace older ones now in orbit. Lockheed Martin is building the new satellites outside Denver.

GPS is best-known for its widespread civilian applications, from navigation to time-stamping bank transactions. The Air Force estimates that 4 billion people worldwide use the system.

But it was developed by the U.S. military, which still designs, launches and operates the system. The Air Force controls a constellation of 31 GPS satellites from a high-security complex at Schriever Air Force Base outside Colorado Springs.

Compared with their predecessors, GPS III satellites will have a stronger military signal that's harder to jam — an improvement that became more urgent after Norway accused Russia of disrupting GPS signals during a NATO military exercise this fall.

GPS III also will provide a new civilian signal compatible with other countries' navigation satellites, such as the European Union's Galileo system. That means civilian receivers capable of receiving the new signal will have more satellites to lock in on, improving accuracy.

"If your phone is looking for satellites, the more it can see, the more it can know where it is," said Chip Eschenfelder, a Lockheed Martin spokesman.

The new satellites are expected to provide location information that's three times more accurate than the current satellites.

Current civilian GPS receivers are accurate to within 10 to 33 feet (3 to 10 meters), depending on conditions, said Glen Gibbons, the founder and former editor of Inside GNSS, a website and magazine that tracks global navigation satellite systems.

With the new satellites, civilian receivers could be accurate to within 3 to 10 feet (1 to 3 meters) under good conditions, and military receivers could be a little closer, he said.

Only some aspects of the stronger, jamming-resistant military signal will be available until a new and complex ground control system is available, and that is not expected until 2022 or 2023, said Cristina Chaplain, who tracks GPS and other programs for the Government Accountability Office.

Chaplain said the new civilian frequency won't be available at all until the new control system is ready.

The price of the first 10 satellites is estimated at $577 million each, up about 6 percent from the original 2008 estimate when adjusted for inflation, Chaplain said.

The Air Force said in September it expects the remaining 22 satellites to cost $7.2 billion, but the GAO estimated the cost at $12 billion.

The first GPS III satellite was declared ready nearly 2½ years behind schedule. The problems included delays in the delivery of key components, retesting of other components and a decision by the Air Force to use a Falcon 9 rocket for the first time for a GPS launch, Chaplain said. That required extra time to certify the Falcon 9 for a GPS mission.

The new ground control system, called OCX, is in worse shape. OCX, which is being developed by Raytheon, is at least four years behind schedule and is expected to cost $2.5 billion more than the original $3.7 billion, Chaplain said.

The Defense Department has struggled with making sure OCX meets cybersecurity standards, she said. A Pentagon review said both the government and Raytheon performed poorly on the program.

Raytheon has overcome the cybersecurity problems, and the program has been on budget and on schedule for more than a year, said Bill Sullivan, a Raytheon vice president in the OCX system.

Sullivan said the company is on track to deliver the system to the Air Force in June 2021, ahead of GAO's estimates.

The Air Force has developed work-arounds so it can launch and use GPS III satellites until OCX is ready to go.

While the first GPS III waits for liftoff in Florida, the second is complete and ready to be transported to Cape Canaveral. It sits in a cavernous "clean room" at a Lockheed Martin complex in the Rocky Mountain foothills south of Denver.

It's expected to launch next summer, although the exact date hasn't been announced, said Jonathon Caldwell, vice president of Lockheed Martin's GPS program.

Six other GPS satellites are under construction in the clean room, which is carefully protected against dust and other foreign particles.

"It's the highest-volume production line in space," Caldwell said.

For the first time, the Air Force is assigning nicknames to the GPS III satellites. The first one is Vespucci, after Amerigo Vespucci, the Italian navigator whose name was adopted by early mapmakers for the continents of the Western Hemisphere.

https://www.airforcetimes.com/news/your-air-force/2018/12/16/us-air-force-set-to-launch-1st-next-generation-gps-satellite

Sur le même sujet

  • UK: £293 million deal for Apache fleet

    18 janvier 2019 | International, Aérospatial

    UK: £293 million deal for Apache fleet

    The MOD has awarded a five-year, multi-million-pound deal to Leonardo Helicopters (UK) for the support of the existing fleet of 50 Apache attack helicopters. Defence Minister Stuart Andrew announced the £293 million contract with Leonardo Helicopters during a visit to the company's site in Yeovil where some of the vital work on the aircraft will take place. The Apache AH MK1 Integrated Operational Support (IOS) contract will maintain the fleet until it's out of service date in March 2024. The Apache MK1 is being incrementally replaced by the latest Apache AH-64E aircraft that will begin entering service with the British Army in 2022. The new AH-64E model will have improved sensors and avionics as well as greater performance that will enable the Army to sustain its battle-winning capabilities in future operations. Defence Minister Stuart Andrew said: The Apache has provided years of crucial battlefield support to UK and coalition troops in operations in Libya and Afghanistan. This multi-million-pound contract will ensure our Armed Forces continue to benefit from this vital capability as we integrate the latest Apache model into service in 2022. The IOS contract secured by Defence Equipment and Support, the MOD's procurement agency, includes deep maintenance, repair and overhaul of the MK1 aircraft as well as the provision of technical and spares support. The contract has been awarded in three tranches, to maintain value for money, with this latest investment covering the final five years of the fleet in service. Full article: https://www.gov.uk/government/news/293-million-deal-for-apache-fleet

  • Marines take steps to hack human performance with data

    3 décembre 2024 | International, Terrestre

    Marines take steps to hack human performance with data

    A new Marine Corps program aims to enhance lethality by using wearable data to improve every area — from sleep and stress level control to marksmanship.

  • New policy addresses 3D parts for Army aircraft

    9 septembre 2020 | International, Aérospatial

    New policy addresses 3D parts for Army aircraft

    By Courtesy As the Army explores the potential of some advanced manufacturing methods and 3D-printed parts to maintain and sustain its aviation fleet, recently published guidance aims to strike a balance between safety, improvements to readiness and escalating costs. Advanced manufacturing refers to new ways of making existing products and the production of new products using advances in technology. Advanced manufacturing includes additive manufacturing, a process of joining materials to make parts from 3D-model data. Additive manufacturing differs from the traditional subtractive process that cuts away material to shape and produce parts. The U.S. Army Aviation and Missile Command recently published a policy memorandum addressing advanced manufacturing for Army aircraft parts, components and support products. “Evolving technologies create a unique challenge as we determine the airworthiness of parts when the data is immature, incomplete or even non-existent,” said AMCOM Commander Maj. Gen. Todd Royar, who serves as the Army's airworthiness authority, responsible for ensuring the safety of the service's aircraft components. As enduring aircraft, like the UH-60 Black Hawk helicopter, continue in service, the supply system with face challenges with obsolescence, meaning parts that are difficult to acquire or receive no bids from potential vendors to manufacture. As the Army keeps pace with technology, advanced manufacturing creates opportunities to optimize long-term sustainment efforts. The Army established a partnership recently with Wichita State University's National Institute for Aviation Research (NIAR) to create a “digital twin” of an aging Black Hawk model. “One of the primary tasks in this effort is to convert all legacy 2D drawings of this aircraft into modern 3D parametric models,” said John Tomblin, senior Vice-President for Industry and Defense Programs and Executive Director of NIAR at Wichita State University. “This will allow the Army to source parts that are out of production as well as use advanced techniques, such as additive manufacturing, to produce parts.” The digital twin opens a door to the 3D modeling and more opportunities to use parts made through additive manufacturing. The NIAR project is not the Army's only effort. Army Aviation is already using advanced manufacturing methods and 3D-printed parts to solve specific challenges. When several CH-47 helicopters experienced structural cracks at a certain portion of the frame assembly, an initial solution was to replace the entire frame assembly. “Replacing the entire assembly is a time-consuming task that also poses logistical challenges because replacements are difficult to obtain,” said AMCOM's Aviation Branch Maintenance Officer, Chief Warrant Officer 5 Michael Cavaco. Instead, engineers designed a solution to restore the cracked frames to their original strength by creating repair fittings using Computer-Aided Design models. “After five iterations of 3D-printing prototypes, test fit and model adjustments, a final design solution was achieved,” Cavaco said. Additionally, 3D printers have created several tools and shop aids that have benefitted the field. Many of these stand-alone items that support maintenance operations are authorized within Army technical manuals, depot maintenance work requirements or similar publications. While too early to predict overall cost and time savings, the advantages of advanced manufacturing are significant. The use of advanced manufactured parts will eliminate wait time on back-ordered parts that, ultimately, delay repairs. A key focus of AMCOM's AM policy is on inserting evolving technologies into enduring designs that have relied on traditional manufacturing processes throughout their acquisition lifecycle. However, future Aviation are benefiting as well from advanced manufacturing. The Improved Turbine Engine Program (ITEP) includes a number of advanced manufacturing elements. “ITEP benefits from advanced manufacturing include reduced cost, reduced weight, increased durability, and enhanced performance when compared to traditional manufacturing methods,” said Col. Roger Kuykendall, the project manager for Aviation Turbine Engines. “The benefits of AM stem from the unique capability to produce more complex hardware shapes while simultaneously reducing part count.” The fine details of airworthiness expectations asserted in this policy were crafted by a team of engineers at the U.S. Army Combat Capabilities Development Command Aviation and Missile Center, led by Chris Hodges, the current acting associate director for Airworthiness-Technology. Hodges said the new policy was drafted after his team collaborated with stakeholders from across the aviation enterprise, reaching across Army organizations and out to sister services and the Federal Aviation Administration. “We considered a lot of input and ultimately organized expectations and requirements by category, spanning from tools and shop aids to critical safety items,” Hodges said. “The resulting policy sets a solid foundation with room to grow and fill in details as the story evolves.” For Army aviation applications, advanced-manufactured parts and components will be managed under six categories that range from articles that support maintenance operations to those aviation critical safety items, whose failure would result in unacceptable risk. The designated categories prescribe for engineers and manufacturers the allowed materials and appropriate testing methodology for each particular part. The new guidance is not intended as a replacement for other existing policies that address advanced manufacturing. “We intend to be in concert with Army policies and directives that pertain to readiness, maintenance and sustainment,” Royar said. “Our policy provides a deliberate approach to ensure airworthiness and safety while determining where research and efforts may best supplement the supply chain and improve performance while balancing cost.” AMCOM Command Sgt. Major Mike Dove acknowledged the methodology must continue to mature in multiple areas before confidence grows in the ability to measure airworthiness qualification requirements for advanced-manufactured parts. “We fully support the maturation requirements for advanced-manufacturing technology, but not at the expense of flight safety,” Dove said. As Army aviation continues to pursue and include advanced-manufacturing methods, Royar noted the potential impact as the technology evolves. “Advanced manufacturing touches units, depots and the broader supply chain,” Royar said. “As we sustain our enduring aircraft and look to future systems, it is important that we keep pace with this and other emerging technologies for the sake of the warfighter.” https://www.army.mil/article/238868/new_policy_addresses_3d_parts_for_army_aircraft

Toutes les nouvelles