13 octobre 2021 | International, Terrestre
A high-demand, deployable training software is the Army's goal
From home station to CTCs and in theater, trainng tools will be part of the fight.
15 octobre 2019 | International, Aérospatial
By: Jen Judson
WASHINGTON — The Army is building what is essentially a “cloud in the sky” for its current aviation fleet as it prepares the aircraft to fight alongside a future fleet under development, according to Brig. Gen. Thomas Todd, the program executive officer for Army aviation.
The general spoke to Defense News in an interview ahead of the Association of the U.S. Army's annual conference.
The current fleet won't dissolve into thin air when future helicopters are fielded, and they will be expected to fly together in operational environments across multiple domains. The Army is aiming to field a future attack reconnaissance aircraft and a future long-range assault aircraft by 2030.
“We have to figure out a way to host a common server so that we can store data, process data and transport data quicker,” Todd said. “So while they work on the future vertical lift architecture, we still have to make the enduring fleet, that will fly alongside it, work and be capable.”
So the Army is building an Aviation Mission Common Server, or AMCS, that is a stack of storage, data processing and transport capability “that's very much a flying cloud, if you will,” Todd said.
The AMCS “will reside inside every aircraft. It has to reside in every aircraft because there has to be onboard processing and storage power,” Todd said, adding that it will be the engine that drives the associated user interface and apps as well as provide connectivity to the network overall.
The user interface will be built upon the technology developed by Northrop Grumman for the Victor-model Black Hawk. The "V" model is an L-model UH-60 with a digital, modern cockpit like the "M" model, the latest Black Hawk variant, but not with an M-model price tag. Additionally, the interface in a V model can take on new capability through apps like a smartphone. The V model wrapped up its initial operational test and evaluation in September at Joint Base Lewis-McChord in Washington state, Brig. Gen. MacMcCurry, who is the Army G-3/5/7 aviation director inside the Pentagon, told Defense News in a separate interview. He reported the tests went well and the service looks forward to building out the fleet.
The Army is currently assessing integrating the same user interface into Mike-model Black Hawks, according to Todd.
The effort to build the server is part of a larger effort to ensure the current fleet is ready to fight in multidomain operations. The Army wants to obtain multidomain dominance by 2035.
“We took a look at Army Futures Command's guidance on exactly what those combat aviation brigades would have in them and what would be enduring. For example, the Apache would be there indefinitely,” Todd said. “We also found that the requirements for data, the transport of and use of was exponential. So ultimately it's a problem that exists for the entire fleet, so we need to get after, at a minimum, making the enduring fleet compatible with future vertical lift, if not more capable.”
There are several cross-cutting initiatives for the current fleet to make the aircraft more agile, interoperable, survivable and integrated in multidomain operations, Todd said, and the network will play an integral role.
For example, the Army is working with the network community to replace its AN/ARC-201 radios with radios with the TSM waveform, which will improve and comply with future air-to-ground radio communications, according to Todd.
There is also work being done within the position, navigation and timing community and with the Air Force to develop antennas, processors and software that hep the current fleet to survive battle, Todd added.
And the service is working to improve power sources onboard aircraft. “There is a huge demand requirement coming, a demand signal for onboard systems and the power requirements of those is exponential. So given that it's not linear and it's going to grow exponentially, we have to get after alternative means,” Todd said.
The same team that is in charge of the Improved Turbine Engine Program — which will replace engines in Apaches and Black Hawks and be the engine for the future attack reconnaissance aircraft — is looking at supplemental power units, upgrades to generators and upgrades to batteries to better power onboard systems that may not require the main power system anymore, Todd said.
13 octobre 2021 | International, Terrestre
From home station to CTCs and in theater, trainng tools will be part of the fight.
26 juin 2018 | International, Naval
David B. Larter WASHINGTON ― The U.S. Navy is convinced that the next generation of ships will need to integrate lasers, electromagnetic rail guns and other power-hungry weapons and sensors to take on peer competitors in the coming decades. However, integrating futuristic technologies onto existing platforms, even on some of the newer ships with plenty of excess power capacity, will still be an incredibly difficult engineering challenge, experts say. Capt. Mark Vandroff, the current commanding officer of the Carderock Division of the Naval Surface Warfare Center and the former Arleigh Burke-class destroyer program manager who worked on the DDG Flight III, told the audience at last week's American Society of Naval Engineers symposium that adding extra electric-power capacity in ships currently in design was a good idea, but that the weapons and systems of tomorrow will pose a significant challenge to naval engineers when it comes time to back-fit them to existing platforms. “Electrical architecture on ships is hard,” Vandroff said. Vandroff considered adding a several-megawatt system to a ship with plenty of power to spare, comparing it with simultaneously turning on everything in a house. “When you turn everything on in your house that you can think of, you don't make a significant change to the load for [the power company],” Vandroff explained. “On a ship, if you have single loads that are [a] major part of the ship's total load, [it can be a challenge]. This is something we had to look at for DDG Flight III where the air and missile defense radar was going to be a major percentage of the total electric load ― greater than anything that we had experienced in the previous ships in the class. That's a real technical challenge. “We worked long and hard at that in order to get ourselves to a place with Flight III where we were confident that when you turned things on and off the way you wanted to in combat, you weren't going to light any of your switchboards on fire. That was not a back-of-the-envelope problem, that was a lot of folks in the Navy technical community ... doing a lot of work to make sure we could get to that place, and eventually we did.” In order to get AMDR, or SPY-6, installed on the DDG design, Vandroff and the team at the DDG-51 program had to redesign nearly half the ship — about 45 percent all told. Even on ships with the extra electric-power capacity, major modifications might be necessary, he warned. “We're going to say that in the future we are going to be flexible, we are going to have a lot of extra power,” Vandroff said. “That will not automatically solve the problem going forward. If you have a big enough load that comes along for a war-fighting application or any other application you might want, it is going to take technical work and potential future modification in order to get there.” Even the powerhouse Zumwalt class will struggle with new systems that take up a large percentage of the ship's power load, Vandroff said. “Take DDG-1000 ― potentially has 80-odd megawatts of power. If you have a 5- or 6-megawatt load that goes on or off, that is a big enough percentage of total load that it's going to be accounted for. Electrical architecture in the future is still an area that is going to require a lot of effort and a lot of tailoring, whatever your platform is, to accommodate those large loads,” he said. In 2016, when the Navy was planning to install a rail gun on an expeditionary fast transport vessel as a demonstration, service officials viewed the electric-power puzzle as the reason the service has not moved more aggressively to field rail gun on the Zumwalt class. Then-director of surface warfare Rear Adm. Pete Fanta told Defense News that he wanted to move ahead with a rail gun demonstration on the JHSV because of issues with the load. “I would rather get an operational unit out there faster than do a demonstration that just does a demonstration,” Fanta said, “primarily because it will slow the engineering work that I have to do to get that power transference that I need to get multiple repeatable shots that I can now install in a ship.” https://www.defensenews.com/naval/2018/06/24/future-navy-weapons-will-need-lots-power-thats-a-huge-engineering-challenge/
29 novembre 2023 | International, Aérospatial
The award brings to 153 the number of KC-46s Boeing is on contract to build worldwide for the United States and allies.