14 mai 2020 | International, C4ISR

The Army network plan to ‘compete everything’

Andrew Eversden

The Army recently conducted a critical design review for technologies it plans to deploy for Capability Set '21, one of the first pieces of its battlefield network modernization.

In the review, the Army tested various elements of Cap Set '21, such as tactical radios and satellite terminals. Now, the service is making a series of capability trade offs — assessing affordability, technical maturity and density across formation. For example, the Army is weighing trade-offs between how many of its two-channel Leader radios and more affordable single channel radios will ultimately end up in an infantry brigade.

Col. Garth Winterle, project manager for tactical radios at the Army's Program Executive Officer for Command Control Communication - Tactical, and Lt. Col. Brandon Baer, program manager for helicopter and multi-mission radios (HAMMR), talked with C4ISRNET about the decisions made during the critical design review and what these choices mean for the next batch of equipment known as Capability Set '23.

This transcript has been edited for clarity and brevity.

C4ISRNET: What decisions were made during the critical design review (CDR)?

COL. GARTH WINTERLE: We went from a 100 percent classified network, hard to get people security clearances, very expensive, NSA-certification required for everything as part of the network architecture, to 75 percent secure but [with an] unclassified architecture at battalion and below. That really adds a lot of flexibility — not only in the addition of affordable commercial technologies that really add capability rapidly because that shaves about 24 months off potential fielding timeline if you don't have to go to NSA — but it keeps a very strong encryption using some of the same algorithms you use for NSA certified radios.

It's secure. It's not unsafe. While it's unclassified, it's still very well encrypted. It's just a different way of doing business. So it really opens the door for a lot of different things. Plus, it really improves the ability to share data with coalition and multinational partners, who are also operating at that security level.

C4ISRNET: Can you explain the Terrestrial Transmission Line of Sight (TRILOS) radio and the capability trade off you made?

WINTERLE: The quantities were adjusted in order to afford more flexible, more expedient and pretty much more affordable options at the brigade level and below. There's a system called TRILOS. Think of a big dish on a portable tower. If you can line it up with another big dish on a portable tower over pretty long distances, you can get very high data throughput very quickly ... It's purpose is to connect large command nodes together and enable them to share data much, much better. So one of the things we looked at as part of the CDR, and we experimented with, is a new smaller expeditionary version.

I talked about a giant dish on a portable tower. We went to the company we worked with called Silvus. They have a smaller, little four antenna radio, it's about the size of your home WiFi router [and] does the same thing in slightly less bandwidth. It's not as capable, but it performs that same function. And it's much, much lighter, much easier to pack out and we're actually putting those under quadcopters, like a drone, that are tethered [so] they operate off a line. So you can raise that up in the air and hold that radio up in the air and get really good range to connect two of those radios together to share data. By trading out one system of those large dishes on the tower, we're able to buy a significant quantity of the smaller systems.

TRILOS, those dishes on towers, still remain in the architecture. But just by reducing the quantity marginally, we're able to really add a much more expeditionary much, much lighter, easier to set up. And we can buy it in larger quantities to increase the quantity out in the architecture to increase that capability.

C4ISRNET: Can you describe how the Army intends to procure some of the Integrated Tactical Network components?

WINTERLE: The intent is to compete everything. Single channel radios are a prime example. We're getting ready to invite vendors that have conforming radios to an industry day to basically have a radio run off. [We want them to] provide us enough radios so we can get them integrated and start assessing them against each other and against the current offering from the vendor that actually went through the experiment. It's going to be a fully competitive action.

It is important to note though that I can't just go out and buy a new radio and, boom, I can field it. There is an amount of time where we are going to have to procure a limited quantity of the systems that went through the experiment until I can get those other radios through enough lab-based experimentation and integration, so that I know they work on the network. So even though they might be very similar [to] what we experimented with, there will be a delay so I can actually start fielding those to operational units. But [our] intent is to start that as soon as possible as part of the procurement fielding next year — this competitive run off of single channel radios. Anywhere else where there was a stand-in capability where we know from market research that there's other vendors, we'll perform the same sort of competitive actions.

C4ISRNET: What are some of the lessons learned from Capability Set '21 that can be applied to Capability Set '23?

WINTERLE: We're going to have a design review every year. The year prior to the preliminary design review, which is the year we're in right now for Cap Set '23, focuses on small-scale experimentation and a kind of assessment of ‘what are those technologies that going to compete to be added to the architecture as part of the preliminary design review' in April of next year. So we picked April. We just did this CDR in April. So the preliminary design review for Cap Set '23 is next April. We've partnered with the network cross functional team to help conduct research and development funded activities of certain key technology that they want to see added to the architecture in Cap Set '23.

C4ISRNET: How has the Army's capability set testing structure been suited for COVID-19?

LT. COL. BRANDON BAER: Traditionally, we do a large operational type test, where our approach has been lab-based testing, [cyber]-based testing, and then doing what we're calling soldier touchpoints. They're smaller experiments, but we're doing more of them. It gives us an opportunity to capture data, soldier feedback at different points of time. We call it developmental operations or DevOps. We can go back and tweak the stuff, fix any problems, get it back out there and continue to collect feedback.

But I think it's extremely important due to current conditions with COVID-19, and everything else. Because everything has kind of gone into a large pause. And if we would have had a large pause during operational tests, it could be six months or a year before we have another opportunity to do that, where when you're doing multiple events ... we're capturing data at different times and different soldier feedback, you're not reliant upon one event. As we move forward, I see continuous benefits through that.

https://www.c4isrnet.com/battlefield-tech/c2-comms/2020/05/13/the-army-network-plan-to-compete-everything/

Sur le même sujet

  • Minister Blair to visit British Columbia to discuss aerospace investments, housing for Canadian Armed Forces members, and Canada’s Indo-Pacific Strategy

    3 août 2024 | International, Terrestre

    Minister Blair to visit British Columbia to discuss aerospace investments, housing for Canadian Armed Forces members, and Canada’s Indo-Pacific Strategy

    The Honourable Bill Blair, Minister of National Defence, will visit British Columbia from August 7 to 9, 2024, to discuss investments in Canada’s aerospace sector, housing for Canadian Armed Forces members, and Canada’s Indo-Pacific Strategy.

  • COVID Disrupts Network Tests – But Army Presses On

    12 mai 2020 | International, Terrestre, C4ISR

    COVID Disrupts Network Tests – But Army Presses On

    The Army pushed hard to field-test new tech with real soldiers. Then came the coronavirus. Now the service will have to rely much more on lab testing. By SYDNEY J. FREEDBERG JR.on May 11, 2020 at 5:11 PM WASHINGTON: The Army is taking a calculated risk to field much-needed network upgrades known as Capability Set 21 on time next year. To do that, the service needs to start buying radios, computers, satellite terminals, and much more in bulk this year so it can start fielding them to four combat infantry brigades in early 2021. Many Army weapons programs are staying on schedule because they're still doing digital design work and long-term R&D, much of which can be done online. But Capability Set 21 is so far along that much of its technology was already in field tests with real soldiers — testing that has been badly disrupted by precautions against the COVID-19 pandemic. As a result, said Maj. Gen. David Bassett, Program Executive Officer for Command, Control, & Communications – Tactical (PEO-C3T), the Army may have to rely on more testing data from the lab to make up for limited testing in the field. “As soon as we possibly can, we're going to get this back in the hands of soldiers,” Basset told the C4ISRNet online conference last week. “In the meantime, we know an awful lot from the lab-based risk reduction that we've done.” “The risk,” he said, “is pretty manageable.” Risk & Return The field tests done before the pandemic, combined with extensive lab tests, should be enough to prove the technology will work, Bassett said. In fact, the Army already largely decided what technologies to buy for the upgrade package known as Capability Set 21, he said. What it still wanted soldiers to figure out in field tests, he said, was how they would use it in the field. That feedback from those “soldier touchpoints” would help both fine-tune the tech itself and figure out exactly how much to buy of each item – say, single-channel radios versus multi-channel ones — for each unit. Going ahead without all the planned field-testing means the Army will have to make more fixes after the equipment is already fielded, a more laborious, time-consuming, and costly process than fixing it in prototype before going into mass production. It may also mean the Army initially buys more of some kit than its units actually need and less than needed of other items. But CS 21 is a rolling roll-out of new tech to four brigades a year, not a once-and-done big bang, Bassett explained. So if they buy too much X and too little Y for the first brigade or two, he said, they can adjust the amounts in the next buy and redistribute gear among the units as needed. It's important to make clear that the Army's new technologies have already gone through much more hands-on field testing from actual soldiers than any traditional program, and have improved as a result. In the most dramatic example — not from CS 21 itself but a closely related system — blunt feedback from soldiers and quick fixes by engineers led to major improvements in prototype IVAS augmented reality goggles, a militarized Microsoft HoloLens that can now show soldiers everything from live drone feeds to a cross-hairs for targeting their rifle. Doing such “soldier touchpoints” early and often throughout the development process is central to the 20-year-month Army Futures Command's attempt to fix the service's notoriously disfunctional acquisition system. But to stem the spread of the COVID-19 coronavirus, the Army – like businesses, schools, and churches around the world – has dramatically cut down on routine activities. “Units are either not training, or they're training with significant control measures put in place – social distancing, protective equipment, and things like that,” said Maj. Gen. Peter Gallagher, head of the Network Cross Functional Team at Army Futures Command. That's disrupted the “access to soldiers and the feedback loop that's been so critical to our efforts.” Nevertheless, the Army feels it has enough data to move ahead. It may also assess that the risk of moving ahead – even it requires some inefficient fixes later – is lower than the risk of leaving combat units with their existing network tech, which is less capable, less secure against hacking and less resilient against physical or electronic attack. 2021 And Beyond Capability Set 21 focuses on the Army's light infantry brigades, which don't have many vehicles to carry heavy-duty equipment, as well as rapidly deployable communications units called Expeditionary Signal Battalions. It includes a significant increase in the number of ground terminals for satellite communications, the generals said, though not quite as many as they'd hoped to be able to afford. It'll be followed by Capability Set 23, focused on medium and heavy mechanized units riding in 20-plus ton 8×8 Strykers and 40-plus-ton tracked vehicles. While units with lots of vehicles can carry much more gear, they also cover much larger distances in a day. That means CS 23 will include much more long-range communications through satellites in Low and Medium Earth Orbit, “which give us significantly more bandwidth at lower latency,” Gallagher said. “In some cases, it's almost having fiber optic cable through a space-based satellite link.” Even with CS 21 still in final testing, the Army's already gotten started on CS 23. It's reviewed over 140 white paper proposals submitted by interested companies in January, held “shark tank” pitch sessions with the most promising prospects in March, and is now negotiating with vendors. An Army slide summing up the systems being issued as part of the Integrated Tactical Network. Note the mix of Commercial Off The Shelf (COTS) and military-unique Program Of Record (POR) technologies. There has been some impact from COVID,” Gallagher said, “[but] we will have all the contracts probably let no later than July.” The chosen technologies will go into prototype testing next year, with a Preliminary Design Review of the whole Capability Set in April and a Critical Design Review in April 2022. Further Capability Set upgrades are planned for every two years indefinitely, each focusing on different key technologies and different parts of the Army. Meanwhile, Bassett's PEO shop is urgently pushing out more of its existing network tech to regular, Reserve, and National Guard troops deployed nationwide to help combat COVID-19, Bassett said. That includes everything from satellite communications links to military software on an Android phone, known as the Android Tactical Assault Kit (ATAK). Originally developed to help troops navigate and coordinate on battlefields, ATAK is now being upgraded to provide public health data like rapid updates on coronavirus cases. “Any soldier that was responding to this COVID crisis that needed network equipment, we wanted them to have a one-stop shop,” Bassett told the conference. “They would come to us and we'd go get it for them.” https://breakingdefense.com/2020/05/covid-disrupts-network-tests-but-army-presses-on

  • Beijing North Vehicle Group Corporation unveils lightweight tracked AFV

    7 octobre 2020 | International, Terrestre, Sécurité

    Beijing North Vehicle Group Corporation unveils lightweight tracked AFV

    Gabriel Dominguez The Beijing North Vehicle Group Corporation, a subsidiary of the China North Industries Group Corporation (Norinco), has released video footage showing a new lightweight tracked armoured fighting vehicle (AFV) reminiscent of the German Army's Wiesel air-transportable vehicle. In a promotional video released on its WeChat page on 1 October, the company showed the small AFV – the designation of which was not disclosed – being test-driven in September by employees in a plateau area at an undisclosed location. Several other larger AFVs of multiple types were also shown in the video undergoing tests at different locations. The video, which was released to mark the 71st anniversary of the founding of the People's Republic of China, shows that the small tracked AFV features four roadwheels per side, a drive sprocket at the front of the hull, a large idler at the rear, and two return rollers supporting the track. https://www.janes.com/defence-news/news-detail/beijing-north-vehicle-group-corporation-unveils-lightweight-tracked-afv

Toutes les nouvelles