8 août 2019 | International, Terrestre

Soon to come to the Army: A high-power microwave to take out drone swarms

By: Jen Judson

HUNTSVILLE, Alabama — The Army is planning to field a high-power microwave capability to take out drone swarms as part of its Indirect Fires Protection Capability system in development.

Through the Army's Rapid Capabilities and Critical Technologies Office (RCCTO) the service is looking to get the capability fielded to a unit by 2024 with a demonstration of the capability planned in 2022, the RCCTO director said August 7 at the Space and Missile Defense Symposium.

RCCTO's job is to serve as a bridge between the science and technology community and the program executive offices, helping bring technology out of development and into soldiers' hands, first on a small scale and then a larger scale when passed off to program offices. The RCCTO right now is focused entirely on hypersonics and directed energy weapons.

The IFPC system is being developed to counter rockets, artillery and mortar, as well as cruise missiles and unmanned aircraft systems, and the means to do that would be through a system featuring multiple types of missiles and also a laser capability to take out threats. Adding lasers to the mix means decreasing the number of expensive shots that would be taken against very inexpensive weapons.

The Army is working to initially field a 100-kilowatt laser capability on a Family of Medium Tactical Vehicles as part of the IFPC program with a plan to demonstrate the capability in 2022 and then field prototypes to a unit. And the RCCTO is also looking at how to field even more powerful lasers for the IFPC mission between 250 and 300 kilowatts.

But the service recognizes it might be easier to disrupt the flight of multiple drones at once rather than try to take out each one with a laser.

“Lasers can do things but if you are a combatant commander, there is a toolbox of things you need to be successful on the battle space,” Thurgood said. “It's not just one tool but a series of tools.”

So the program is teaming with the Air Force's effort to develop a high power microwave capability, he said. The Air Force will do the research and development work, but the Army will supply them with funding to build prototypes.

The goal is to demonstrate a high-power microwave capability in 2022 and then field the capability to a small unit, much like what the RCCTO will do with the IFPC high-energy laser system.

If the laser and high-power microwave capability both work well in small units, then they will transition to programs of record within the IFPC program, Thurgood said.

Earlier this year, the Army awarded a contract to Dynetics, who is partnered with Lockheed Martin and Rolls Royce, to build the 100-kilowatt laser system for IFPC.

The Army is also rapidly fielding a 50-kilowatt laser on a Stryker. Raytheon and Northrop Grumman are competing to build the system and, in FY21, the two lasers will be tested on difficult threats. The service will choose on to build prototypes that will be fielded to a Platoon in FY22.

https://www.defensenews.com/digital-show-dailies/smd/2019/08/07/the-armys-indirect-fires-protection-system-is-getting-a-high-power-microwave/

Sur le même sujet

  • US Army begins experimenting with new network tools

    28 juillet 2020 | International, C4ISR

    US Army begins experimenting with new network tools

    Andrew Eversden WASHINGTON — The U.S. Army's combat capabilities development team kicked off a monthslong experiment last week to test emerging technologies that could be added into the service's tactical network. The third annual Network Modernization Experiment at Joint Base McGuire-Dix-Lakehurst in New Jersey started July 20 and ends Oct. 2. NetModX provides an opportunity for the Combat Capabilities Development Command's C5ISR Center — or Command, Control, Communication, Computers, Cyber, Intelligence, Surveillance, and Reconnaissance Center — to perform field tests with emerging capabilities that have largely been tested in the lab. Field tests with simulated threat environments, as opposed to lab tests, are important because technologies react in unexpected ways due to realities like different types of trees or terrain. This year's theme for NetModX is mission command and command-post survivability, which means participants will focus on technologies that could be fielded in the Army's Integrated Tactical Network Capability Set '23 and Capability Set '25 — future iterations of network tools that the Army plans to deliver to soldiers every two years. In this year's test, the C5ISR Center is testing communications capabilities that allow for distributed mission command systems across the battlefield “and wider area,” said Michael Brownfield, chief of the future capabilities office at the C5ISR Center. “We've learned by watching our enemies fight, and we know that to survive on the battlefield, No. 1, they can't be able to see us,” Brownfield told C4ISRNET in an interview. “And No. 2, we have to distribute our systems across the battlefield to give them multiple targets and multiple dilemmas in order to survive.” NetModX is also testing network resiliency capabilities that could be delivered as part of Capability Set '23. Preliminary design review for the capability set is scheduled for April next year. To test the effectiveness of the resiliency projects the center developed in the lab, the C5ISR Center created a “state-of-the-art red cell” that attacks the network using enemy's tactics, techniques and procedures, according to Brownfield. The goal is to make sure the technology can withstand electronic attacks and allow for continuous operations in contested environments when in the hands of deployed soldiers. “What resiliency means to us is the network bends, it doesn't break,” Brownfield said. “And the commanders have the information they need and the coordination that they need to fight the battle.” A modular radio frequency system of systems is undergoing tests, and Brownfield says it will “revolutionize” the fight on the battlefield. The system automatically switches between primary, alternate, contingency and emergency, or PACE, radios by sensing if radio frequencies are being jammed. The system then responds by automatically switching radio channels to allow for seamless communications in a contested environment. Currently, “it's kind of hard to switch to alternate comms when the person you're talking to is on their primary, not their alternative comms,” Brownfield said. “And the process is very slow. It's human-driven.” Now, the automatic PACE system senses the environment in milliseconds, he said. At last year's experiment, which focused on network transport capabilities to support precision fires for multidomain operations, the center experimented with radios that could flip to new channels on their own, while launching brute force and other more sophisticated attacks against the radios to see how much stress they could handle before passing data became impossible. This year will be a little different. “This year, we're pairing different radios together and see how they can work to actually change the type of modulation schemes that we use to maneuver in cyberspace around for continuous operations while under enemy attack and under contested electronic warfare conditions,” Brownfield said. One of the top priorities for this year's experiment is allowing for projects leaders to bring their technology into to the field, no matter what stage of development they are in, to be tested in an “operationally relevant environment,” Brownfield said. The team then collects data on how the technology performs and puts it into a database where it can be queried to answer specific performance questions. “So we can ... ask the database questions like, ‘What was my latency with these two radios at this point in time,' and start to understand the true metrics of how the systems performed in the field,” Joshua Fischer, acting chief of systems engineering, architecture, modeling and simulation at the C5ISR Center, told C4ISRNET. He added that those involved are also looking at network throughput. https://www.c4isrnet.com/yahoo-syndication/2020/07/24/us-army-begins-experimenting-with-new-network-tools/

  • US Army test-fires Belgian-made gun amid plans for Stryker upgrade competition

    20 juin 2018 | International, Terrestre

    US Army test-fires Belgian-made gun amid plans for Stryker upgrade competition

    Pierre Tran PARIS ― The U.S. Army's test-firing of a 30mm gun turret from CMI Defence is seen by the Belgian firm as putting it in a privileged position for an upcoming tender for greater firepower for the Stryker combat vehicle, a company spokesman said. “We're in pole position, “ Xavier Rigo, communications manager of CMI Defence, told Defense News on June 18. “That does not mean we will win the race, but it puts us in a very good position. We are very proud to have been selected for tests, a real recognition for our team and our equipment.” That test-firing stems from a cooperative research and development agreement CMI signed in 2015 with the U.S. Army Armament Research, Development and Engineering Center, which is seeking a lethality upgrade for the Stryker. CMI adapted the turret to fit the U.S. requirement for linkless ammunition, he said. ATK supplies the 30mm gun, which CMI fitted to its turret. The Belgian company also supplies a 105mm gun turret for a bid led by SAIC in the U.S. tender for the Mobile Protected Firepower program. CMI has fielded its Cockerill 3105 turret, which uses its turret and 105mm cannon, with the latter built in a factory in northern France. A Cockerill 3105 turret was among the products on display at the CMI stand at the Eurosatory trade show, which ran June 11-15. The stand at the show two years ago used the Cockerill brand name. BAE Systems, General Dynamics Land Systems and SAIC are the competitors in that Mobile Protected Firepower competition, Rigo said. The next step is a down-select to two bidders, which will be asked to build and supply 12 prototype vehicles for tests. In Europe, CMI is ”in discussion with the Belgian government“ in its search for a role in Belgium's planned €1 billion (U.S. $1.2 billion) acquisition of the Griffon and Jaguar armored vehicles from the French Army Scorpion program. Those talks are exploring the possibility for CMI to participate in local production and maintenance of the Scorpion vehicles, he said. The Belgian project, dubbed Capacité Mobilisé, or CAMO, sparked debate, as the planned acquisition boosted French contractors Arquus, Nexter and Thales, but left CMI turrets by the wayside. CMI has delivered 130 gun turrets and is building some 20 turrets per month to supply GDLS, which has a contract with a Middle Eastern country, he said, declining to identify the client nation. Those turrets are based on four modules, armed with 30mm, 90 mm, 105 mm, and both 105mm and 30mm guns. There are both manned and unmanned versions of the turret. Canadian broadcaster CBC reported March 19 that GLDS Canada has sold to Saudi Arabia combat vehicles armed with 105mm and 30mm guns for ”heavy assault,” anti-tank and direct-fire support. CMI conducted a firing demonstration of its six Cockerill gun turrets June 15 at the French Army Suippes firing range, eastern France. Some 60 representatives of foreign army delegations attended, the company said in a statement. The Belgian company had been one of the bidders for Arquus, the then-Governmental Sales unit of Volvo Group, until the Swedish truck maker canceled the sale. Nexter had been the other bidder. https://www.defensenews.com/digital-show-dailies/eurosatory/2018/06/19/us-army-test-fires-belgian-made-gun-amid-plans-for-stryker-upgrade-competition/

  • Augmented reality: Seeing the benefits is believing

    20 juillet 2020 | International, C4ISR

    Augmented reality: Seeing the benefits is believing

    Lt. Col. Brett Lindberg and Jan Kallberg There is always something taken away when there are added functionalities. Does the concept of wearing augmented reality that digitally provides situational awareness create an upside that outweighs what it takes away for rifleman skills? The supercharged hearing, six senses for those equipped, broader view of sight, picking up smells, changes in lights and shadows, slightest change in the near environment: With all these close-action skills, will augmented reality create more distraction than enhancement? Is it too early to push digital situational awareness all the way down to the soldier in maneuver units? Is the upside present? Naturally, all new defense technology takes time to find its place in the fight. The helicopter was invented in the 1930s, and it found a limited military role in the Korean War, not meeting the military expectation of higher impact. But 15 years later, it played a pivotal role in the war in Vietnam. New technology is not only technology — the human component to properly implement it is likely slower than the technological advancements. It is always easier to question than explain, and we understand that many thoughts and thousands of work hours have gone into designing the early augmented reality systems. However, still we find our questions worth discussing because once fielded, utilized and put into action in a conflict, it is too late to raise any concerns. This is the time to discuss. How reliable are the sensors? Can the sensors be easily spoofed? Is it too early to push it all the way down to the individual soldier? A technologically advanced adversary will likely devote research already in peacetime to develop one-time use, tossable, simple, low-cost devices that can — in close combat — create spurious sensor data and derail augmented reality. If the integrity of the sensor data is in question, it will likely force commanders to refrain from using augmented reality. A similar, relevant issue is the extent of the augmented reality technology's electromagnetic signature. Will the interconnectivity of the squad's augmented reality compromise the unit and deliver information to the enemy? What we do not want to face is a situation where adversaries can pinpoint the location or proximity to U.S. forces by simple detection measures. So, worst-case scenario, inexpensive devices can nullify a significant U.S. investment in technology, training and tactics. Added to the loss of usable augmented reality equipment, the soldiers could be “HUD-crippled.” Navy aviators use the term “HUD-cripple” to visualize a complete dependency of heads-up displays in the cockpit. The “HUD-cripple” is the loss of traditional Navy aviator skills such as landing on an aircraft carrier without the heads-up display. Will soldiers have retained the skills to fight effectively without augmented reality if it goes down? Technical advancements bring us new options and abilities, and they increase mission success. But as with all uncharted territory, they also bring surprises and unanticipated outfalls. During the war in Vietnam in the 1960s and 1970s, military aviation instruments took a significant leap forward, going from World War II-styled gauges in fixed-winged Douglas A-1 Skyraider planes to an earlier version of today's instrumentation in McDonnell Douglas F-15 Eagle fighter jets rolled out as the war in Vietnam came to an end. Parallel with the military advancements, these avionic upgrades were transposed into civilian cockpits with increased complexity and variations, as jetliners are multi-engine airframes, where the number of information points and alarms became numerous in the jetliner cockpit. In the late 1970s and early 1980s, civilian aviation faced several accidents that were hard to explain with standard aviation physics and crash evidence. Instead, the conversations recorded in the black boxes revealed these fatal air crashes. Several of the deadly crashes could have had another outcome if the pilots had not become overwhelmed by all the blinking lights, alarms, buzzers and avionics grabbing their attention, so the pilots lost situational awareness and focus. The warnings, avionics and buzzers had the correct information, but the presentation was a tsunami of red blinkers and alarming sounds, lacking any hints on how to prioritize what needs to be done to recover from a dangerous in-flight emergency. In our view, the key to effective augmented reality is to structure and segment what matters and when. Units — and it varies from soldier to soldier — have different experience levels, so information has a variation in value down to the soldier level. In research design, you seek to explain as much as you can with as little as you can without losing rigor. The same challenge goes for augmented reality, where rigor could be said to be the integrity of the information. Transferred to the ground-fighting world, are we, as an engineering-driven nation, so technology-happy that instead of creating tools for increased survivability and mission success, we initially increase the risks for the war fighter and only correct these after we suffered a surprise in combat? We understand that implementing augmented reality is a long process that is just now at the stage of proving the concept; with setbacks and successes, where are we on the learning curve? In our view, synthetic learning environments have already matured and provide an ample opportunity to use the augmented reality technology with a high return on investment. The opportunities reside in knowledge transfer, sharing experiences, preparing for an ever-changing operational environment, and by doing so, increasing soldiers' survivability and ensuring mission success. The question is: Are we ready to rely on augmented reality in combat? Lt. Col. Brett Lindberg is a research scientist at the Army Cyber Institute at West Point and a simulation operations officer. Jan Kallberg is a research scientist at the Army Cyber Institute at West Point, and an assistant professor at the U.S. Military Academy. The views expressed are those of the author and do not reflect the official policy or position of the Army Cyber Institute at West Point, the U.S. Military Academy or the U.S. Defense Department. https://www.c4isrnet.com/opinion/2020/07/17/augmented-reality-seeing-the-benefits-is-believing/

Toutes les nouvelles