2 août 2022 | International, C4ISR

SES Completes $450 Million Acquisition of DRS Global Enterprise Solutions Doubling US Government Business

The DRS GES business will be combined with SES GS to create a scaled solutions provider serving the multi-orbit satellite communications needs of the US Government and supporting missions 

https://www.epicos.com/article/737434/ses-completes-450-million-acquisition-drs-global-enterprise-solutions-doubling-us

Sur le même sujet

  • Hypersonics: DoD Wants ‘Hundreds of Weapons’ ASAP

    27 avril 2020 | International, Aérospatial

    Hypersonics: DoD Wants ‘Hundreds of Weapons’ ASAP

    “We want to deliver hypersonics at scale,” said R&D director Mark Lewis, from air-breathing cruise missiles to rocket-boosted gliders that fly through space. By SYDNEY J. FREEDBERG JR. WASHINGTON: The Pentagon has created a “war room” to ramp up production of hypersonic weapons from a handful of prototypes over the last decade to “hundreds of weapons” in the near future, a senior official said Wednesday. Those weapons will range from huge rocket-powered boost-glide missiles, fired from Army trucks and Navy submarines at more than Mach 10, to more compact and affordable air-breathing cruise missiles, fired from aircraft at a relatively modest Mach 5-plus. “It isn't an either-or,” said Mark Lewis, modernization director for Pentagon R&D chief Mike Griffin. “It isn't rocket-boost or air-breathing, we actually want both, because those systems do different things.” Right now, however, US combat units have neither. Inconsistent focus and funding over the years means that “we had a number of programs in the department that were very solid technology development programs, but at the end of those programs, we would have prototypes and we'd have weapons in the single-digit counts,” Lewis said during a webcast with the Air Force Association's Mitchell Institute. “If you've got a program that delivers eight missiles and then stops, well, which of the thousand targets in our target set are we going to use those eight missiles against?” With hypersonics now a top priority for both Undersecretary Griffin and Defense Secretary Mark Esper, the Pentagon is trying to improve that stop-and-go track record with a new “hypersonic acceleration plan” – no pun intended, Lewis said. Griffin likes to compare the effort to the Cold War, when the US had a massive nuclear weapons infrastructure capable of building complex components by the tens of thousands. “We want to deliver hypersonics at scale,” Lewis said. “That means hundreds of weapons in a short period of time in the hands of the warfighter.” Mass-production, in turn, requires production facilities – but today hypersonic prototypes are basically hand-crafted by R&D labs like Sandia. Lewis and his counterpart in the Pentagon's acquisition & sustainment directorate, Kevin Fahey, are “co-chairing what we're were calling a war room ... looking at the hypersonic industrial base,” he said. “That's not just the primes, but the entire industrial base” down to small, specialized suppliers. Controlling cost is both essential to large-scale production and a huge challenge, Lewis acknowledged. “We don't know what these things cost yet,” he said. “We've asked the primes to consider costs as they're developing.” Which hypersonic weapons the Pentagon buys also makes a major difference. “There are some technology choices we can make that lead us to more cost-effective systems,” he said. “I'm especially enthusiastic about hypersonic weapons that come off the wings of airplanes and come out of bomb bays, [because] I think those are some of the keys to delivering hypersonic capabilities at scale and moderate cost.” Likewise, “[there's] larger investment now in the rocket boost systems,” Lewis said, “[but] one of the reasons I'm so enthusiastic about scramjet-powered systems, air-breathing systems is I think that, fundamentally, they can be lower-cost than their rocket-boosted alternatives.” Why is that? Understanding the policy, it turns out, requires a basic understanding of the physics. Breaking Defense graphic from DoD data Four Types of Hypersonics “Hypersonics isn't a single thing,” Lewis said. “It's a range of applications, a range of attributes, [defined by] the combination of speed and maneuverability and trajectory.” To put it in simple terms – and I'll beg the forgiveness of any aerospace engineers reading this – there are two kinds of hypersonic projectile, based on how they fly: one is an air-breathing engine flying through the atmosphere, like a jet plane or cruise missile; the other is a rocket booster arcing to the edge of space, like an ICBM. There are also two kinds of platform you can launch from: an aircraft in flight high and fast above the earth, or a relatively slow-moving vehicle on or below the surface, like an Army truck, Navy warship or submarine. Combine these and you get four types. Lewis thinks all four could be worth pursuing, although the Pentagon currently has programs – that we know about – for only three: Air-launched boost-glide: Air Force ARRW (Air-launched Rapid Response Weapon). The Air Force also had another program in this category, HCSW (Hypersonic Conventional Strike Weapon), but they canceled it to focus on ARRW, which the service considers more innovative and promising. Surface-launched boost-glide: Army LRHW (Long Range Hypersonic Weapon) and Navy CPS (Conventional Prompt Strike). Both weapons share the same rocket booster, built by the Navy, and the same Common Hypersonic Glide Body, built by the Army, but one tailors the package to launch from a wheeled vehicle and the other from a submarine. Air-launched air-breathing: HAWC (Hypersonic Air-breathing Weapons Concept) and HSW-ab (Hypersonic Strike Weapon-air breathing). Arguably the most challenging and cutting-edge technology, these programs are both currently run by DARPA, which specializes in high-risk, high-return research, but they'll be handed over to the Air Force when they mature. Surface-launched air-breathing: This is the one category not in development – at least not in the unclassified world. But Lewis said, “eventually, you could see some ground-launched air breathers as well. I personally think those are very promising.” Each of these has its own advantages and disadvantages, Lewis explained. Rocket boosters are proven technology, offering tremendous speed and range. The Minuteman III ICBM, introduced in 1970, can travel over 6,000 miles at Mach 23. Their one drawback is that ICBMs can't steer. Once launched, they follow a predictable course like a cannon ball, which is why they're called ballistic missiles. The big innovation of boost-glide weaponry is that it replaces the traditional warhead with an agile glider. Once the rocket booster burns out, the glide body detaches and coasts the rest of the way, skipping nimbly across the upper layers of the atmosphere like a stone across the pond. But boost-glide has some big limitations. First, once the rocket booster detaches, the glide body has no engine of its own so it just coasts, losing speed throughout its flight. Second, precisely because the rocket launch is so powerful, it puts tremendous strain on the weapon, whose delicate electronics must be hardened against shock and heat. Third, the booster is big, because a rocket not only has to carry fuel, it has to carry tanks of oxygen to burn the fuel. Breaking Defense graphic from DoD data An air-breathing engine, by contrast, can be significantly smaller. It just has to carry the fuel, because it can scoop up all the oxygen it needs from the atmosphere. That means the whole weapon can be smaller, making it much easier to fit on an aircraft, and that it can accelerate freely during flight instead of just coasting, making it more maneuverable. But while conventional jet engines are well-proven technology, they don't function at hypersonic speeds, because the airflow pours their intakes far too fast. So you need a sophisticated alternative such as a scramjet, a complex, costly technology so far found only on experimental vehicles, like the Air Force's revolutionary Boeing X-51. Even with a scramjet, you can't fly too high because the air doesn't provide the needed oxygen. That means air-breathing weapons can't reach the same near-space altitudes as boost-glide missiles. They also can't fly nearly as fast. Lewis expects air-breathers will probably top out around Mach 7, half or less the peak speed of a boost-glide weapon. (That said, remember the glider will have slowed down somewhat by the time it reaches the target). Sandia National Laboratories glide vehicle, the ancestor of the Army-built Common Hypersonic Glide Body The platform you launch from also has a major impact on performance. Warships, submarines, and long-bodied heavy trucks can carry bigger weapons than aircraft, but the weapons they carry need to be bigger because they have to start from low altitude and low speed and go all the way to high-altitude hypersonic flight. By contrast, an air-launched weapon doesn't need to be as big, because it's already flying high and fast even before it turns on its motor. All these factors suggest that the big boost-glide weapons are probably best launched from land or sea, the smaller air-breathing ones from aircraft in flight. But since boost-gliders go farther and faster than air-breathers, you still want them as an option for your bombers for certain targets. On the flipside, while a naval vessel or ground vehicle has plenty of room to carry boost-glide weapons for ultra-long-range strikes, it can also use the same space to carry a larger number of the smaller air-breathers for closer targets. “We're interested in basically the full range,” Lewis said. “We've got some ideas of things we want to put into play quickly, but we're also extremely open-minded about future applications, future technologies.” https://breakingdefense.com/2020/04/hypersonics-dod-wants-hundreds-of-weapons-asap/

  • ‘The math doesn’t make sense’: Why venture capital firms are wary of defense-focused investments

    31 janvier 2020 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

    ‘The math doesn’t make sense’: Why venture capital firms are wary of defense-focused investments

    By: Aaron Mehta WASHINGTON — In American's technology marketplace, venture capital funds are crucial for pumping capital into small companies in need of cash infusions to keep operating. Part of the venture capital model is acknowledging that many of those businesses will fail, but if a few are successful, venture capitalists can make huge returns on their investments. At a time when the Pentagon is working hard to entice small technology companies to work on defense projects, venture capital, or VC, funding could further mature technology and give entrepreneurs a chance to keep projects going. And yet, investors seem wary of putting forth cash to support companies with a defense focus. Why? In the wake of the very public fight inside Google over working with the Pentagon — which ended with the company pulling the plug on its Project Maven participation — there was a consensus from the defense establishment that there may be a culture gap that is simply too large to overcome. But according to a trio of venture capitalists who spoke to Defense News in December, the reasons are simpler. Katherine Boyle, with VC firm General Catalyst, said the culture issue is overblown for the VC community. The reluctance to work on defense programs comes down to a mix of “math and history," she said. "The math is the reason why investors are hesitant to put a third of their fund into these types of technologies because history shows us that they haven't worked out well,” Boyle explained. She said the math can be broken down into three factors: mergers, margins and interest rates. On the first, she pointed to the fact that the defense sector has seen thousands of firms exit the market, sometimes because of acquisitions by primes. But, she argued, where mergers and acquisitions tend to occur in other parts of the world to acquire new technology or capability, in the defense realm it's all about contracting value. That makes it “very difficult for new technologies to enter the market and ultimately be acquired at the valuations that venture investors would need to see in order to have a return for their fund.” In terms of margins, Boyle pointed out that defense firms are very focused on hardware, which requires a lot of investment upfront. That makes it “very difficult to invest in for venture capital firms because software has 80 percent margins, and it's much easier to build a company that can scale very quickly if it's software-based versus needing a lot of capital,” she said. The third factor, interest rates, ties into the last two. For decades interest rates have allowed VC firms to expand dramatically — something that requires a constant flow of return from investments in order to turn around funds and quickly invest in another opportunity. In the world of defense, investors with $3 billion to $5 billion under management by the VC community will find it difficult to get the kind of returns investors are accustomed to from other markets. All three of those factors come together in a mix that means there are very few chances for VC firms to invest in defense-related companies that match up with what a VC traditionally wants to see, said John Tenet, a partner with investment firm 8VC and vice chairman of the defense company Epirus. “VC investors invest based on speed and scale and probability of a 10 to 20 times return. And so I think that's where you've seen a little bit of apprehension, at least in [Silicon] Valley,” Tenet said. “The exits haven't been that fast, and you sort of have these five big players on one side [that] sort of monopolize the market.” From a pure numbers standpoint, a good benchmark for performance is to look at the S&P 500, according to Trae Stephens, co-founder and chairman of Anduril Industries and partner at Founders Fund. Over a 10-year period, an investor in the S&P can expect to get roughly 3 times their investment back. VC firms want to be able to beat that for an investment to be worth it. To highlight the challenge of attracting VC funding to defense firms with potentially limited return, Stephens pointed to the case of Blackbird Technologies. A venture-backed player in specialized communications tech aimed at the defense market, Blackbird was bought in 2014 by Raytheon for about $420 million. That looks good on paper, but the reality is the churn isn't strong enough for a big, Silicon Valley-based venture capital group. “A lot of times in the government, people say: ‘Oh, Blackbird is this, like, great example of a success story that was like a boost for venture.' It's actually not. It's not a venture scale of return for most funds,” he said. “There are some funds where the economics of [an exit that size] is really good, but for large, Silicon Valley tier-one funds, it doesn't move the needle. And so you have to have these multibillion-dollar opportunities in order for it to really make economic sense.” Another issue raised by Stephens will be familiar to defense primes as well: concerns over sharing intellectual property with the Defense Department. The department is essentially saying “you are the right product for us, now turn over your source code,” Stephens said. “It's crazy. We're literally doing to our companies in America what we're criticizing the Chinese for doing to their companies and to our companies when we enter that market. And so there has to be a better commercial practice for enabling companies to retain their IP and do business with the government without having to fight a legal battle every time they go through a contract.” ‘Knock down the doors' Despite those concerns, all three venture capitalists that spoke to Defense News are involved in investments in defense-focused firms. So why are they spending their money in the sector? Mission is part of it — the belief that, as Americans, a stronger Defense Department benefits their firms. But that only goes so far if dollars don't follow. Once again, it comes down to math. Investing in a company focused on defense technologies, which may have to wait years to secure a contract with the Pentagon, isn't a great strategy for a VC firm looking for quick returns. But if a company is able to get government funding early on, the business suddenly becomes more worthy of investment, said Boyle. “If the government is allocating capital in the right way, it will get VC dollars immediately. Like, it will follow so quickly,” Boyle said. “I see so many people come in to our office and they have an OTA [other transaction authority contract], and they're excited. It's a small, $1 million contract, and that is great for a seed company. But if that same company came in 18 months later and said, ‘Oh, by the way, the OTA has turned into a $10 million contract,' that would meet every milestone that I usually see to series A.” (An OTA is a type of contract that enables rapid prototyping; series A financing is the investment that follows growth from initial seed capital used to launch operations.) “$10 million to the US government is nothing, but to [a] startup — $10 million is the best startup I've seen all year, if they're an 18-month-old startup and they're getting that kind of capital early on,” she said. Added Stephens: “It means they're doing something right.” That creates a chicken and egg scenario: Venture capitalists only want to invest in companies that already have a Pentagon contract, but small firms often can't keep the doors open long enough without external funding while waiting for the department's contracting processes to progress. While groups such as the Defense Innovation Unit — the Pentagon's technology hub — are helping speed along that process, it remains a problem with no easy solution, at a time when the Pentagon needs the nondefense technology community in ways it hasn't for decades. Boyle believes there is a “growing group” of investors who see the strong success of a handful of companies like goTenna, Anduril or Shield AI that have managed to break through and become successful defense-focused investment vehicles. That means the next few years are going to be critical for everyone involved. “None of us would be here if we weren't optimistic,” she said. “I actually think this is an incredible time to be investing in deep tech, particularly deep-tech companies that are selling to the Department of Defense because if it doesn't happen now, it never will.” https://www.defensenews.com/smr/cultural-clash/2020/01/30/the-math-doesnt-make-sense-why-venture-capital-firms-are-wary-of-defense-focused-investments/

  • Strategic Command will now oversee nuclear communications

    26 juillet 2018 | International, C4ISR

    Strategic Command will now oversee nuclear communications

    By: Andrew C. Jarocki   The communication system which keeps the president in touch with the nuclear triad during a crisis will now be the responsibility of the head of U.S. Strategic Command. The change came about from concerns that the nuclear command, control and communications systems, or NC3, lacked a clear chain of command under the current structure. The system is comprised of satellites, radars and fixed or mobile command posts. “The Chairman of the Joint Chiefs of Staff has appointed the commander of U.S. Strategic Command to be the NC3 enterprise lead, with increased responsibilities for operations, requirements, and systems engineering and integration,” a U.S. STRATCOM spokeswoman told SpaceNews. The Pentagon's 2018 Nuclear Posture Review found the NC3 system “subject to challenges from both aging system components and new, growing 21st century threats” such as cyber warfare. The report also warned that “Russian nuclear or non-nuclear strategic attacks could now include attacks against U.S. NC3." “The Secretary [of Defense] has told me multiple times," Gen. John Hyten, the head of U.S. Strategic Command, said in a recent speech at the nuclear submarine base in King's Bay, Georgia. "Besides your day-to-day operational responsibilities ... your next highest priority is to make sure we get nuclear command and control right.” https://www.c4isrnet.com/c2-comms/2018/07/25/strategic-command-will-now-oversee-nuclear-communications/

Toutes les nouvelles