10 mars 2020 | International, C4ISR

Pentagon Seeks New SatCom Tech For ‘Fully Networked C3’

"Our fully networked C3 [Command, Control, & Communications] will look completely different" from current satellites and terminals, said OSD's Doug Schroeder.

By THERESA HITCHENS

SATELLITE 2020: The Pentagon wants industry ideas on how to craft a “fundamentally new architecture” for command, control and communications (C3) that will allow “any user using any terminal to connect to any other user using any other terminal,” says Doug Schroeder, who oversees the effort under the Office of Research and Engineering (R&E).

This kind of omnipresent, all-service connectivity across land, sea, air, and space is essential for the Pentagon's rapidly evolving of future war, known as Joint-All Domain Operations.

“Our Fully Networked C3 communications will look completely different. We have a new vision. We're crafting it with the help of industry,” he said. “We're relying on very heavily on industry, starting with this Broad Agency Announcement dated March 6,” which asks for companies to submit white papers in short order.

According to Schroeder, the Space Development Agency (SDA) will be the funding authority. Vendors whose short, 10 to 15 page white papers are chosen will be invited at the end of April to a Pitch Day. Winners then will be given three months to develop a proposal; contracts for prototypes will be granted 24 months later.

Speaking to a relatively sparse audience here at the annual commercial satellite industry conference, Satellite 2020 — which is underway despite the threat of the COVID-19 Coronavirus — Schroeder stressed: “We are going to take our new direction from you.”

The new strategy, called Fully Networked C3 (FNC3), is being spearheaded by R&E director Mike Griffin and his assistant director for FNC3, Michael Zatman. According to the BAA, the first issued under the effort, the new strategy is being designed to “enable the DoD to reliably communicate with all its tactical and strategic assets.” C3 is one of Griffin's Top Ten areas of technology innovation for which DoD is developing an agency-wide development strategy.

Specifically, DoD now is looking for “Beyond-Line-Of-Site (BLOS) communications systems for airborne, surface, and subsurface systems that is [sic] compatible with both FNC3 enabled systems and legacy systems,” the BAA states.

The BAA calls for White Papers to be submitted by March 30 for three different types of BLOS technologies:

1. Protected Radio Frequency (RF) BLOS Communications.
2. Multi-User/Multi-Point High-Data-Rate Laser Communications.
3. Communications with submerged assets.

R&E intends to “develop, prototype, and demonstrate each innovative communications capability with the goal of transitioning the technologies into programs of record,” the BAA said. To ensure speedy results, DoD will use Other Transaction Authority (OTA) for prototyping (found under 10 U.S. Code § 2371b.)

Much of the detail about the effort is contained in classified annexes.

What we do know: Beyond-Line-Of-Sight communications relayed through satellites generally require equipping platforms — such as aircraft, ships, and ground vehicles — with high-throughput voice and data links, capabilities all of the services have expressed interest in. In particular, after years of little progress, Griffin has reinvigorated DoD interest in optical communications via laser links, in large part due to fears about Russian and Chinese RF jamming. Commercial industry has been rushing to develop optical links to enable satellite-to-satellite data transmission, and the Space Development Agency is interested in that capability for its so-called transport layer of small satellites in Low Earth Orbit.

Radio-frequency communications with submarines when underwater are generally limited to terse text messages, transmitted at very low frequencies (three to 30 kilohertz) and extremely low frequencies (three to 300 hertz) and requiring very large antennas to receie them. Research work is ongoing at MIT on how to link traditional underwater sonar to airborne RF receivers, a methodology called Translational Acoustic-RF) communication. Research also is ongoing, including at MIT's Lincoln Lab, on using narrow-beam lasers to allow one underwater vehicle to communicate with another.

BLOS communications can also be accomplished without using satellites. Alternative method include tropospheric scatter using microwave radiation, high frequency (HF) wireless, unmanned aerial vehicle (UAV) relays, and passive reflector systems.

https://breakingdefense.com/2020/03/pentagon-seeks-new-satcom-tech-for-fully-networked-c3

Sur le même sujet

  • Here’s what the Army wants in future radios

    9 avril 2018 | International, C4ISR

    Here’s what the Army wants in future radios

    By: Mark Pomerleau Advancements in electronics and tactics by high-end adversaries are forcing the Army to change the way it revamps and optimizes its communications network against current and future threats. The problem: adversaries have become more proficient and precise in the sensing and jamming of signals. “What we're looking for in terms of resilience in the future is not only making individual links more anti-jam and resilient, resistant to threats, but also having the ability to use multiple paths if one goes down,” Joe Welch, chief engineer at Program Executive Office Command, Control, Communications Tactical (C3T), told reporters during a network demo at Fort Myer in early March. “Your phones work this way between 4G and Wi-Fi and that's seamless to you. That's kind of the target of what we're intending to provide with next-generation transport for the Army's tactical network.” Members of industry are now looking to develop radios to these specifications outlined by the Army. “We have an extensive library of waveforms — 51, 52 waveforms that we can bring to bear — that we can say look we can use this waveform to give you more resilience with this capability,” Jeff Kroon, director of product management at Harris, told C4ISRNET during an interview at the AUSA Global Force Symposium in Huntsville, Alabama, in March. “Down the road, we need to talk about resilience and what's going on with the near-peer threats.” Next-generation systems, leaders believe, will be able to provide this necessary flexibility. “The radios that we're looking at buying now — the manpack and the two-channel leader radios — have shown themselves to be able to run a pretty wide range of waveforms and we think it postures us to run some changes to those waveforms in the future as we look at even more advanced waveforms,” Maj. Gen. David Bassett, program executive officer of C3T, told reporters at Fort Myer. While jammers have become more powerful and targeted in recent years, officials contend the entire spectrum can't be interrupted at once. The Army realizes links won't be jam-proof, Bassett told reporters at Fort Myer, so it is looking at how they can be either more jam-resistant or able to switch seamlessly across portions of the spectrum that are not being jammed. Kroon noted that one of the big developments within the radio community down the road will be radios that seamlessly switch frequencies or waveforms without direct user input. “I think, as we move forward, we'll start to have more cognitive capabilities that will allow [the radio] to adapt automatically, and keep the user focused on their own job and let the radio handle the rest,” he said. In addition to multiwaveform and a large range of spectrum coverage, Kroon said the Army is also really looking for multifunction capabilities within radios. Radios also have to have passive sensing capabilities to be able to understand the signals in the environment and provide some level of situational awareness of the spectrum environment. “They have to have visibility into what's going on around them ... not just for [electronic warfare] purposes but sometime just knowing what's going on in the spectrum around you as a planner is really important,” Kroon said. “What's actually going on out there, I don't know I was told this frequency was clear, how do I really know. Having a radio come back and say look what we hit ... it is actually very useful.” https://www.c4isrnet.com/show-reporter/global-force-symposium/2018/04/06/heres-what-the-army-wants-in-future-radios/

  • Government watchdog finds more problems with F-35’s spare parts pipeline

    26 avril 2019 | International, Aérospatial

    Government watchdog finds more problems with F-35’s spare parts pipeline

    By: Valerie Insinna WASHINGTON — Only about half of the F-35s worldwide were ready to flyduring an eight-month period in 2018, with the wait for spare parts keeping jets on the ground nearly 30 percent of the time, according to a new report by the Government Accountability Office. Over the past several years, the Defense Department has sought to improve mission capable rates by making improvements to the way it and F-35 contractor Lockheed Martin order, stockpile and repair spare parts. However, GAO's findings imply that the situation may have gotten worse. The GAO's report, released April 25, investigated how spare parts shortages impacted F-35 availability and mission capable rates in 2018, with most data gathered between a May and November sustainment contract period. “In 2017, we reported that DOD was experiencing sustainment challenges that were reducing warfighter readiness, including delays of 6 years in standing up repair capabilities for F-35 parts at its depots and significant spare parts shortages that were preventing the F-35 fleet from flying about 20 percent of the time,” GAO said in the report. “According to prime contractor data, from May through November 2018, F-35 aircraft across the fleet were unable to fly 29.7 percent of the time due to spare parts shortages,” it said. “Specifically, the F-35 supply chain does not have enough spare parts available to keep aircraft flying enough of the time necessary to meet warfighter requirements.” That lack of improvement may make it more difficult for the U.S. Air Force, Navy and Marine Corps to hit an 80 percent mission capable rate by the end of fiscal year 2019, as mandated by then-Defense Secretary Jim Mattis last fall. The military services stopped providing mission capable rates for aircraft last year, citing operational sensitivities. However, the data put forth by the GAO indicates that progress stagnated in the lead up to Mattis' order. From May to November 2018, mission capable rates — which measure how many planes possessed by a squadron can perform at least one of its missions — hovered around 50 percent for all versions of the F-35. But when GAO assessed how many planes were fully mission capable — meaning that they were ready to fulfill all of their mission sets — all variants were far from meeting the 60 percent target. Only 2 percent of F-35C carrier takeoff and landing versions hit the fully mission capable mark, with the F-35Bs slightly better at 16 percent and the F-35A at 34 percent. The GAO is skeptical that the services will be able to hit the 80 percent mission capable rate goal this year, and it is even more critical of the Defense Department's plans to fund spares in future years. The department intends to buy “only enough parts to enable about 80 percent of its aircraft to be mission-capable based on the availability of parts.” However, that planning construct will likely only yield a 70 percent mission capable rate at best, the GAO said, because it only accounts for the aircraft on the flight line and not jets that are in the depot for longer term maintenance. No silver bullet for parts shortage issues Like all complicated problems, there is no single solution for the F-35 spare parts shortage, which is driven by a number of factors. GAO indicated that the Defense Department still has “a limited capacity” to repair broken parts, creating a backlog of 4,300 parts still needing to be addressed. Between September and November, it took more than six months to fix parts that should have been repaired in a window of two to three months. The F-35's much-maligned Autonomic Logistics Information System (ALIS) was designed to be able to track parts and automate the process of generating and expediting work orders, however, GAO notes that the system still requires manual workarounds from users in order to accomplish tasks. Supply and maintenance personnel cited challenges such as “missing or corrupted electronic spare parts data,” limited automation and problems caused by ALIS's subsystems not communicating with each other properly, it said. As the F-35 is still a relatively new platform, it has taken time for the program to assess which parts have been failing more often than previously estimated — but that is an area where the Defense Department is making progress, the GAO stated. “DOD has identified specific parts shortages that are causing the greatest aircraft capability degradation, and it is developing short-term and long-term mitigation strategies to increase the quantity and reliability of these parts,” the report said. One such component is a coating used on the F-35's canopy to help it maintain its stealth characteristics, which has been found to peel off at an unexpected rate, creating a heightened demand for canopies. “To address these challenges, the program is looking for additional manufacturing sources for the canopy and is considering design changes,” the GAO stated. But — somewhat paradoxically — the F-35 has been flying for a long enough time that there is significant parts differences between the first jets that rolled off the production line to the most recently manufactured planes. The GAO found “at least 39 different part combinations across the fleet” on top of variations in software. “According to the program office, DOD spent more than $15 billion to purchase F-35 aircraft from the earliest lots of production, specifically lots 2 through 5 ... but it faces challenges in providing enough spare parts for these aircraft,” the report stated. One problem — the cannibalization of F-35 aircraft for parts — is partially user-inflicted. “From May through November 2018, F-35 squadrons cannibalized (that is, took) parts from other aircraft at rates that were more than six times greater than the services' objective,” the GAO stated. “These high rates of cannibalization mask even greater parts shortages, because personnel at F-35 squadrons are pulling parts off of other aircraft that are already unable to fly instead of waiting for new parts to be delivered through the supply chain.” During an interview this February, Lt. Col. Toby Walker, deputy commander of the 33rd Maintenance Group, told Defense News that F-35 maintainers at Eglin Air Force Base, Fla., had stopped pulling parts off a cannibalized F-35 and had seen some improvements to mission capable rates as a result. “We're not continually moving parts from one aircraft to another. We're relying on the program to provide our parts,” he said. “It was a very strategic plan to do that to increase aircraft availability by not sitting an aircraft down.” In a statement, Lockheed Martin said that it had taken key steps to improve parts availability, such as transitioning some suppliers to performance based logistics contracts that incentivize companies to meet certain targets, as well as “master repair agreements” that will allow other suppliers to make longer term investments in their production capability. “These actions are beginning to deliver results and we're forecasting additional improvement. Newer production aircraft are averaging greater than 60 percent mission capable rates, with some operational squadrons consistently at 70 percent,” the company said. “From a cost perspective, Lockheed Martin has reduced its portion of cost per aircraft per year by 15 percent since 2015. Our goal is to further reduce costs to $25,000 cost per flight hour by 2025, which is comparable to legacy aircraft while providing a generational leap in capability.” https://www.defensenews.com/air/2019/04/25/government-watchdog-finds-more-problems-with-f-35s-spare-parts-pipeline

  • F-35 Lightning II: A 21st century concept

    5 décembre 2019 | International, Aérospatial

    F-35 Lightning II: A 21st century concept

    by Alan Stephenson The F-35 Lightning II is not only a fifth-generation fighter aircraft, but a 21st century tooth-to-tail concept. I recently had the privilege to join a Canadian media trip sponsored by Lockheed Martin to visit the F-35 production facility in Fort Worth, Texas, as well as the 63rd Fighter Squadron, at Luke Air Force Base, Ariz., which is responsible for F-35 pilot training. Industry executives and F-35 operators presented detailed briefings on the latest aircraft improvements, maintenance concepts and operational considerations, as well as a tour of the production line and an up-close look at the aircraft itself. Without a doubt, the F-35 system represents a progressive leap in technology and life cycle management. Design concept Although some have questioned the very idea of a “fifth-generation” designation, the F-35 is the result of an evolutionary process in the design of low-observable (stealth) fighter aircraft for the United States Air Force (USAF). It draws upon the experiences of creating and operating the F-117 Nighthawk and the F-22 Raptor fighters. The lessons learned went beyond simply enhancing aircraft performance; the F-35 ameliorates fundamental life cycle cost issues through leveraging emerging technologies and leading-edge concepts to maximize readiness, logistic and maintenance efficiencies. In effect, the F-35 is built for sustainment. The fighter aircraft makes use of a modular avionics architecture with fusion technology, rather than a federated architecture where Line Replaceable Units (LRU or “black boxes”) are placed in a sequence. In this manner, maintainers no longer need to remove the first and second boxes to replace the third; they simply replace an easily accessible modular LRU. Roughly 95 per cent of the LRUs are first line removeable and virtually all first line maintenance functions are accessible through the weapons bay doors, nose wheel well, and behind panels that can be opened and closed without causing any low observable skin repairs. Ease of maintenance is further achieved from simple redesigns such as a front-hinged canopy that facilitates ejection seat removal without the need to remove the canopy. ALIS, the state-of-the-art Autonomic Logistics Information System, provides real-time digital information that also significantly reduces maintenance demands. “ALIS integrates a broad range of capabilities including operations, maintenance, prognostics, supply chain, customer support services, training and technical data,” according to Lockheed Martin. Maintenance staff can quickly determine the health of the aircraft upon landing through Prognostic Health Management (PHM) and quickly resolve any anomalies, increasing the serviceability rate and minimizing technician fault-finding time through fewer maintenance steps. PHM is a maintenance system that monitors the actual condition of an aircraft to decide what maintenance needs to be done. As all aircraft fleet operators know, unscheduled maintenance and lack of spare parts increases manpower demands and decreases aircraft availability. ALIS is designed to reduce maintenance hours, increase readiness, and decrease labour related costs by offering greater control in sustainment functions and providing actionable information to military decision-makers. Cost drivers From an initial reported cost of over US$100 million, the per-unit costs for the F-35 have fallen to US$77.9 million for Lot 14 fighters. The nine-nation co-operative development and the economies of scale of 12 current customers have greatly contributed to bringing life cycle costs closer to those of contemporary fourth-generation fighters. Costs have been lowered in assembly of the aircraft through use of an automated production line, designed to produce 180 aircraft per year, which has seen a 75 per cent reduction in “touch-labour” since 2010. Each aircraft is personalized by purchase order, allowing all three models to be produced in tandem, and unlike other fighters, the jet is essentially combat-ready when it leaves the production facility, having complete indigenous offensive and defensive avionic suites. With respect to sustainment, the F-16 had 24 different stovepipes supporting worldwide operations. ALIS logistics functions are networked with all F-35 users and supports a consolidated global supply chain that aggressively sources and produces the most cost-effective parts available, making them available as required and thereby minimizing costly inventory. A mandated Reliability and Maintainability (R&M) program has established metrics within automated processes designed to ensure constant systemic evaluation and facilitate continuous improvements that lower support costs and expedite fleet upgrades. At a reported six hours of maintenance per flight hour, the F-35A is at the forefront of fighter operations. Conscious design features such as internal weapons carriage and the use of pneumatic (air pressure) weapons ejection rather than explosive cartridges has significantly reduced maintenance personnel hours required to clean and service fourth generation weapons delivery systems. Another example of manpower savings occurs in routine checks on the fuel tanks and valves, where only one F-35 technician with a Portable Maintenance Aide (a laptop computer the technician connects to the F-35) is now required to conduct the same task that requires six maintainers to perform on the F-16. In manpower savings alone, anecdotal evidence suggests a 60 per cent reduction in personnel to perform routine maintenance functions. Operations At the flight line, significant changes have occurred to USAF military occupations and employment through innovative maintenance developments such as the Blended Operational Lightning Technician (BOLT) and the Lightning Integrated Technicians (LIT) programs. The BOLT program combines six USAF technical trades into two streams. The Air Vehicle stream includes crew chiefs, fuels, and low observable technicians, while the Mission Systems stream focuses on avionics, weapons, and egress trades. This streaming not only economizes manpower but allows deployed operations to be conducted with a smaller personnel footprint. In addition, the LIT program was introduced to increase maintenance efficiencies and effectiveness by integrating these two streams into one co-ordinated team through establishing commonality in training and dedicating each team to a single aircraft. The low observability of the F-35 is more than just a means to penetrate adversary defences; it is a “nose-to-tail” concept that increases performance and survivability from reduced drag and a low platform electromagnetic signature. The embedded antennas in the radar absorbent skin, internal fuel tanks and weapons carriage, and full line-of-sight radar reflection blockage not only help define the F-35 as a fifth-generation fighter, but the addition of an advanced sensor suite with sensor fusion, an electro-optical Distributed Aperture System (DAS) electronic warfare suite and networked enabled operations cement the fifth-generation classification. The Active Electronically Scanned Array (AESA) radar is a computer-controlled array antenna in which individual radar beams can be electronically steered to point in different directions without moving the antenna. This feature allows the F-35 to perform multiple functions such as detecting, tracking, and attacking airborne targets while simultaneously countering or attacking ground-based radar systems. When combined with the embedded sensors and advanced CNI (communications, navigation, identification) capabilities, the F-35 becomes an ISR (intelligence, surveillance, reconnaissance) as well as a command and control (C2) platform. These radical innovations elevate the F-35 from a tactical fighter to an operational asset with strategic value. The F-35, with commonality shared amongst its three variants, can perform air-to-air, air-to-surface, electronic attack, ISR gathering, and localized C2 roles during a single mission. Tactically, the increase in situational awareness allows F-35 pilots to fly farther apart and with more individual freedom, changing the manner in which fourth-generation fighters are employed. Operationally, a flight of F-35s flying missions in the Arctic can also provide localized ISR and C2 functions in a region devoid of such assets. Additionally, the F-35 requires fewer operational support platforms such as AWACS, Joint STARS and stand-off electronic warfare aircraft to conduct combat operations. The F-35 could be considered a strategic asset that would allow Canada to offer NATO the flexibility of employing Canada's fighter commitment strategically to support either the traditional northern flank or send its assets to central Europe. In either case, eight NATO nations will already have their own F-35 infrastructure in place to operationally facilitate Canadian integration. Conclusion Given the innovative design, leading-edge avionics suites, automated production line, networked sustainment program, globalized supply chain, and fundamental changes to how air forces conduct business, it is hard to argue that the F-35 is not only a fifth-generation fighter, but that the F-35 system is a transformational 21st century concept. The F-35 is more than a simple multi-role fighter, it is multi-mission platform. There are indeed identified problems as the F-35 program matures that are part of the evolution of any new platform. However, with the weight of the U.S. government and 12 customer nations, the chances are that these challenges will be resolved satisfactorily. With the cost to own an F-35 fighter in the same range as other fighter aircraft on the market today, the real discriminators are in the costs to operate and the value-added to military operations. Alan Stephenson (Col ret'd) holds a PhD from Carleton University and is a former CF-188 pilot with 3,600 hours flying fighters. He is currently an aviation consultant and a Fellow at the Canadian Global Affairs Institute. https://www.skiesmag.com/news/f-35-lightning-ii-a-21st-century-concept/

Toutes les nouvelles