9 septembre 2020 | International, Aérospatial

New policy addresses 3D parts for Army aircraft

By Courtesy

As the Army explores the potential of some advanced manufacturing methods and 3D-printed parts to maintain and sustain its aviation fleet, recently published guidance aims to strike a balance between safety, improvements to readiness and escalating costs.

Advanced manufacturing refers to new ways of making existing products and the production of new products using advances in technology. Advanced manufacturing includes additive manufacturing, a process of joining materials to make parts from 3D-model data. Additive manufacturing differs from the traditional subtractive process that cuts away material to shape and produce parts.

The U.S. Army Aviation and Missile Command recently published a policy memorandum addressing advanced manufacturing for Army aircraft parts, components and support products.

“Evolving technologies create a unique challenge as we determine the airworthiness of parts when the data is immature, incomplete or even non-existent,” said AMCOM Commander Maj. Gen. Todd Royar, who serves as the Army's airworthiness authority, responsible for ensuring the safety of the service's aircraft components.

As enduring aircraft, like the UH-60 Black Hawk helicopter, continue in service, the supply system with face challenges with obsolescence, meaning parts that are difficult to acquire or receive no bids from potential vendors to manufacture. As the Army keeps pace with technology, advanced manufacturing creates opportunities to optimize long-term sustainment efforts.

The Army established a partnership recently with Wichita State University's National Institute for Aviation Research (NIAR) to create a “digital twin” of an aging Black Hawk model.

“One of the primary tasks in this effort is to convert all legacy 2D drawings of this aircraft into modern 3D parametric models,” said John Tomblin, senior Vice-President for Industry and Defense Programs and Executive Director of NIAR at Wichita State University. “This will allow the Army to source parts that are out of production as well as use advanced techniques, such as additive manufacturing, to produce parts.” The digital twin opens a door to the 3D modeling and more opportunities to use parts made through additive manufacturing.

The NIAR project is not the Army's only effort. Army Aviation is already using advanced manufacturing methods and 3D-printed parts to solve specific challenges. When several CH-47 helicopters experienced structural cracks at a certain portion of the frame assembly, an initial solution was to replace the entire frame assembly.

“Replacing the entire assembly is a time-consuming task that also poses logistical challenges because replacements are difficult to obtain,” said AMCOM's Aviation Branch Maintenance Officer, Chief Warrant Officer 5 Michael Cavaco.

Instead, engineers designed a solution to restore the cracked frames to their original strength by creating repair fittings using Computer-Aided Design models.

“After five iterations of 3D-printing prototypes, test fit and model adjustments, a final design solution was achieved,” Cavaco said. Additionally, 3D printers have created several tools and shop aids that have benefitted the field. Many of these stand-alone items that support maintenance operations are authorized within Army technical manuals, depot maintenance work requirements or similar publications.

While too early to predict overall cost and time savings, the advantages of advanced manufacturing are significant. The use of advanced manufactured parts will eliminate wait time on back-ordered parts that, ultimately, delay repairs.

A key focus of AMCOM's AM policy is on inserting evolving technologies into enduring designs that have relied on traditional manufacturing processes throughout their acquisition lifecycle. However, future Aviation are benefiting as well from advanced manufacturing.

The Improved Turbine Engine Program (ITEP) includes a number of advanced manufacturing elements.

“ITEP benefits from advanced manufacturing include reduced cost, reduced weight, increased durability, and enhanced performance when compared to traditional manufacturing methods,” said Col. Roger Kuykendall, the project manager for Aviation Turbine Engines. “The benefits of AM stem from the unique capability to produce more complex hardware shapes while simultaneously reducing part count.”

The fine details of airworthiness expectations asserted in this policy were crafted by a team of engineers at the U.S. Army Combat Capabilities Development Command Aviation and Missile Center, led by Chris Hodges, the current acting associate director for Airworthiness-Technology.

Hodges said the new policy was drafted after his team collaborated with stakeholders from across the aviation enterprise, reaching across Army organizations and out to sister services and the Federal Aviation Administration.

“We considered a lot of input and ultimately organized expectations and requirements by category, spanning from tools and shop aids to critical safety items,” Hodges said. “The resulting policy sets a solid foundation with room to grow and fill in details as the story evolves.”

For Army aviation applications, advanced-manufactured parts and components will be managed under six categories that range from articles that support maintenance operations to those aviation critical safety items, whose failure would result in unacceptable risk. The designated categories prescribe for engineers and manufacturers the allowed materials and appropriate testing methodology for each particular part.

The new guidance is not intended as a replacement for other existing policies that address advanced manufacturing.

“We intend to be in concert with Army policies and directives that pertain to readiness, maintenance and sustainment,” Royar said. “Our policy provides a deliberate approach to ensure airworthiness and safety while determining where research and efforts may best supplement the supply chain and improve performance while balancing cost.”

AMCOM Command Sgt. Major Mike Dove acknowledged the methodology must continue to mature in multiple areas before confidence grows in the ability to measure airworthiness qualification requirements for advanced-manufactured parts.

“We fully support the maturation requirements for advanced-manufacturing technology, but not at the expense of flight safety,” Dove said.

As Army aviation continues to pursue and include advanced-manufacturing methods, Royar noted the potential impact as the technology evolves.

“Advanced manufacturing touches units, depots and the broader supply chain,” Royar said. “As we sustain our enduring aircraft and look to future systems, it is important that we keep pace with this and other emerging technologies for the sake of the warfighter.”

https://www.army.mil/article/238868/new_policy_addresses_3d_parts_for_army_aircraft

Sur le même sujet

  • Lockheed: New Demand for F-16s Could Push Type Past 5,000 Mark

    14 septembre 2020 | International, Aérospatial

    Lockheed: New Demand for F-16s Could Push Type Past 5,000 Mark

    Sept. 11, 2020 | By John A. Tirpak After nearly shutting down production several times, Lockheed Martin is getting a surge of orders for the F-16. With a current backlog of 130 jets, and several countries on the cusp of making orders, the company sees a possibility of surpassing the 5,000th airplane of the type, Lockheed Martin Executive Vice President of Aeronautic Michele A. Evans said Sept. 9. “We're seeing a ... resurgence of the F-16 business,” Evans said in an interview with Air Force Magazine. The company is producing Block 70 Falcons for Bahrain, Bulgaria, and Slovakia at its Greenville, S.C., plant, where it moved the F-16 line last year, freeing up space at its Fort Worth, Texas, plant for the F-35 production line. “We're up to about 4,600 aircraft delivered and can see possibly getting up to 5,000,” Evans said. Production is ramping up to four aircraft a month at Greenville, which has increased its workforce to 400 employees, she noted. It is also operating under an indefinite delivery/indefinite quantity Air Force contract to supply F-16s to Morocco and Taiwan and potential future or repeat customers. The IDIQ vehicle will streamline and speed up contracting so there is a “base configuration” of aircraft to be built, “and then we propose only the unique capabilities for each country,” in the form of specific sensors or capabilities, she said. “We then just negotiate that contract with those countries.” The backlog does not include India, where Lockheed is seeking a contract for an advanced version of the F-16 to be called the F-21. Along with partner Tata, Lockheed would build 114 airplanes in India, under license, if it wins the competition. The F-16 sales could also create future F-35 customers, Evans said. “For a lot of these countries, ... as we get them capable with the F-16, we believe the next step for many ... is future procurement of the F-35.” Evans said the U.S. Air Force is seeking more operational flight program and software updates for its own F-16s, and may be interested in other improvements as well. The Air Force is “looking to advance the capability” of its Falcons, she said. The current backlog will keep the F-16 in production through 2025, Evans noted, but Lockheed would consider increasing the rate of production if demand increases. Hitting 5,000 Falcons delivered would likely take more than seven years of sustained work, she said. However, “We don't see any issues in terms of being able to meet customer demand,” she added. Editor's Note: This story was updated at 9:41 a.m. Sept. 12 to include the correct number in the F-16 backlog. https://www.airforcemag.com/lockheed-new-demand-for-f-16s-could-push-type-past-5000-mark

  • F-35 Propulsion Upgrade Moves Forward Despite Uncertainty

    28 juillet 2020 | International, Aérospatial

    F-35 Propulsion Upgrade Moves Forward Despite Uncertainty

    Steve Trimble Stabilizing the production system and securing a funded, long-term upgrade plan are now the main objectives for Pratt & Whitney's F135 propulsion system for the Lockheed Martin F-35. Although first delivered for ground--testing 17 years ago, the F135 remains a lifeline in Pratt's combat aircraft engines portfolio for new-development funding. The U.S. military engines market is entering an era of transition with great uncertainty for the timing of the next major combat aircraft program. Enhancement Package replaces “Growth Option” New F-35 propulsion road map due in six months The transition era begins with the likely pending delivery of Pratt's most secretive development project. In 2016, the U.S. Air Force named Pratt as one of seven major suppliers for the Northrop Grumman B-21 bomber. The Air Force also has set the first flight of the B-21 for around December 2021. That timing means Pratt is likely to have delivered the first engine for ground-testing. At some point within the next year, Pratt should be planning to deliver the first flight-worthy engine to Northrop's final assembly line in Palmdale, California, to support the Air Force's first B-21 flight schedule. As the bomber engine development project winds down, the propulsion system for the next fighter aircraft continues to be developed, but without a clear schedule for transitioning to an operational system. The Air Force Research Laboratory's Adaptive Engine Transition Program (AETP) is sponsoring a competition to develop an adaptive engine that can modulate the airflow into and around the core to improve fuel efficiency and increase range. The AETP competition is between Pratt's XA101 and GE's XA100 designs, with the first engines set to be delivered for ground-testing by the end of this year or early next year. As 45,000-lb.-thrust-class engines, the first AETP designs are optimized for repowering the single-engine F-35, but the F-35 Joint Program Office (JPO) has established no requirement to replace the F135 for at least another five years. A follow-on effort within the AETP is developing a similar engine for a next-generation fighter, but neither the Air Force nor the Navy have committed to a schedule for transitioning the technology into an aircraft-development program. That leaves Pratt's F135 as the only feasible application for inserting new propulsion technology for a decade more. After spending the last decade focused on completing development of the F-35 and upgrading the software, electronics and mission systems, the JPO is developing a road map to improve the propulsion system through 2035. As the road map is being developed, program officials also are seeking to stabilize the engine production system. Pratt delivered about 600 F135s to Lockheed through the end of last year, including 150—or about 25%—in 2019 alone. The JPO signed a $7.3 billion contract with Pratt last year to deliver another 509 engines in 2020-22, or about 170 a year. Although Pratt exceeded the delivery goal in 2019 by three engines, each shipment came an average of 10-15 days behind the schedule in the contract. The fan, low-pressure turbine and nozzle hardware drove the delivery delays, according to the Defense Department's latest annual Selected Acquisition Report on the F-35. Lockheed's production schedule allows more than two weeks before the engine is needed for the final assembly line, so Pratt's late deliveries did not hold up the overall F-35 schedule, says Matthew Bromberg, president of Pratt's Military Engines business. F135 deliveries finally caught up to the contract delivery dates in the first quarter of this year, but the supply chain and productivity disruptions caused by the COVID-19 pandemic have set the program back. About five engines scheduled for delivery in the second quarter fell behind the contractual delivery date, Bromberg says. The pressure will grow as a loaded delivery schedule in the second half of the year adds pressure on deliveries, but Pratt's supply chain managers expect to be back within the contract dates in the first quarter of next year, he says. The F-35 program's political nature also has caused program disruptions. The Defense Department's expulsion of Turkey from the F-35 program last year also banished the country's supply chain, which contributed 188 parts to the F135. In particular, Alp Aviation produces the Stage 2, 3, 4 and 5 integrally bladed rotors (IBR) for the F135. As of early July, about 128 parts now made in Turkey are ready to transition to other suppliers, of which about 80% are based in the U.S., according to Bromberg. The new suppliers should be requalified to produce those parts in the first quarter of 2021 and ready to meet production rate targets for Lot 15 aircraft, which will begin deliveries in 2023. “The overriding objective was to move with speed and diligence along the transition plan and ensure we are ready to be fully out of Turkey by about Lot 15,” Bromberg explains. “And we are on track for that.” As Pratt transfers suppliers, the company also has to manage the effect on potential upgrade options. Alp Aviation, for example, had announced a research and development program to convert the finished titanium IBRs to a more resilient nickel material. For several years, Pratt has sought to improve the performance of the F135 above the baseline level. In 2017, the company unveiled the Growth Option 1.0 upgrade, which is aimed at delivering modular improvements that would lead to a 5% or 6% fuel-burn improvement and a 6-10% increase in thrust across the flight envelope. The Marine Corps, in particular, was seeking additional thrust to increase payload mass for a vertical landing, but the proposed package did not go far enough to attract the JPO's interest. “It missed the mark because we didn't focus our technologies on power and thermal management,” Bromberg says. A year later, Pratt unveiled the Growth Option 2.0. In addition to providing more thrust at less fuel burn, the new package offered to generate more electrical power to support planned advances in the aircraft's electronics and sensors, with the ability to manage the additional heat without compromising the F-35's signature in the infrared spectrum. Last fall, the JPO's propulsion management office teamed up with the Advanced Design Group at Naval Air Systems Command to analyze how planned F-35 mission systems upgrades will increase the load on the engine's thrust levels and power generation and thermal management capacity. In May, the JPO commissioned studies by Lockheed and Pratt to inform a 15-year technology-insertion road map for the propulsion system. The road map is due later this year or in early 2021, with the goal of informing the spending plan submitted with the Pentagon's fiscal 2023 budget request. As the studies continue, a name change to Pratt's upgrade proposals reveals a fundamental shift in philosophy. Pratt's earlier “Growth Option” terminology is gone. The proposals are now called Engine Enhancement Packages (EEP). The goal of the rebranding is to show the upgrades no longer are optional for F-35 customers. “As the engine provider and the [sustainment] provider, I'm very interested in keeping everything common,” Bromberg says. “The idea behind the Engine Enhancement Packages is they will migrate into the engines or upgrade over time. We don't have to do them all at once. The [digital engine controls] will understand which configuration. That allows us again to be seamless in production, where I would presumably cut over entirely, but also to upgrade fleets at regularly scheduled maintenance visits.” Pratt has divided the capabilities from Growth Options 1 and 2 into a series of EEPs, with new capabilities packaged in increments of two years from 2025 to 2029. “If you go all the way to the right, you get all the benefits of Growth Option 2, plus some that we've been able to create,” Bromberg says. “But if you need less than that and you're shorter on time or money, then you can take a subset of it.” Meanwhile, the Air Force continues to fund AETP development as a potential F135 replacement. As the propulsion road map is finalized, the JPO will decide whether Pratt's F135 upgrade proposals support the requirement or if a new engine core is needed to support the F-35's thrust and power-generation needs over the long term. Previously, Bromberg questioned the business case for reengining the F-35 by pointing out that a split fleet of F135- and AETP-powered jets erodes commonality and increases sustainment costs. Bromberg also noted it is not clear the third-stream technology required for the AETP can be accommodated within the roughly 4-ft.-dia. engine bay of the F-35B. Now Bromberg says he is willing to support the JPO's decision if the road map determines a reengining is necessary. “If the road map indicates that they need significantly more out of the engine than the Engine Enhancement Packages can provide, we would be the first to say an AETP motor would be required,” Bromberg says. “But we think a lot of the AETP technologies will make those Engines Enhancement Packages viable.” https://aviationweek.com/ad-week/f-35-propulsion-upgrade-moves-forward-despite-uncertainty

  • Patria vehicle scores highest in Slovak armored-vehicle acquisition race

    23 mars 2022 | International, Terrestre

    Patria vehicle scores highest in Slovak armored-vehicle acquisition race

    The Finnish company is line to win a $366 million contract aimed at replacing Slovakia's Soviet-era fleet or rides.

Toutes les nouvelles