15 juillet 2019 | International, Autre défense

With Squad X, Dismounted Units Partner with AI to Dominate Battlespace

DARPA's Squad X Experimentation program aims to demonstrate a warfighting force with artificial intelligence as a true partner. In a recent field test, the program worked with U.S. Marines at the Air Ground Combat Center in Twentynine Palms, California, to track progress on two complementary systems that allow infantry squads to collaborate with AI and autonomous systems to make better decisions in complex, time-critical combat situations.

“We are in a race with potential adversaries to operationalize autonomy, and we have the opportunity to demonstrate autonomy in a way that we don't believe any nation in the world has demonstrated to date,” said Lt. Col. Phil Root (USA), the Squad X program manager in DARPA's Tactical Technology Office. “Developing hardware and tactics that allow us to operate seamlessly within a close combat ground environment is extremely challenging, but provides incredible value.”

The exercises in early 2019 in Twentynine Palms followed experiments in 2018 with CACI's BITS Electronic Attack Module (BEAM) Squad System (BSS) and Lockheed Martin's Augmented Spectral Situational Awareness and Unaided Localization for Transformative Squads (ASSAULTS) system. The two systems, though discrete, focus on manned-unmanned teaming to enhance capabilities for ground units, giving small squads battalion-level insights and intelligence.

In the most recent experiment, squads testing the Lockheed Martin system wore vests fitted with sensors and a distributed common world model moved through scenarios transiting between natural desert and mock city blocks. Autonomous ground and aerial systems equipped with combinations of live and simulated electronic surveillance tools, ground radar, and camera-based sensing provided reconnaissance of areas ahead of the unit as well as flank security, surveying the perimeter and reporting to squad members' handheld Android Tactical Assault Kits (ATAKs). Within a few screen taps, squad members accessed options to act on the systems' findings or adjust the search areas.

Between Lockheed Martin's two experiments to date, Root says the program-performer team identified a “steady evolution of tactics” made possible with the addition of an autonomous squad member. They also are focused on ensuring the ground, air, and cyber assets are always exploring and making the most of the current situation, exhibiting the same bias toward action required of the people they are supporting in the field.

CACI's BEAM-based BSS comprises a network of warfighter and unmanned nodes. In the team's third experiment, the Super Node, a sensor-laden optionally-manned, lightweight tactical all-terrain vehicle known as the powerhouse of the BEAM system, communicated with backpack nodes distributed around the experiment battlespace – mimicking the placement of dismounted squad members – along with an airborne BEAM on a Puma unmanned aerial system (UAS). The BSS provides situational awareness, detects of electronic emissions, and collaborates to geolocate signals of interest. AI synthesizes the information, eliminating the noise before providing the optimized information to the squad members via the handheld ATAK.

“A human would be involved in any lethal action,” Root said. “But we're establishing superior situational awareness through sufficient input and AI, and then the ability to do something about it at fast time scales.”

The Squad X program has moved quickly through development and is already well along the transition path, due in large part to the program's focus on partnering with the services to ensure real-world efficacy. For the CACI system, that included an opportunity to test the technology downrange to get real-world information, not simulation. At the most recent experiment with the BSS, service representatives used the system to locate and identify objectives in real time.

For both systems, feedback has included a desire for a user interface so intuitive that training takes an hour or less and any available action is accessible in two screen taps.

Staff Sergeant Andrew Hall with the Marine Corps Tactics and Operations Group (MCTOG), an advisory teammate to DARPA's Squad X Experimentation program, says the ability to provide early input will guard against developing a product that either isn't used or is used improperly.

“The feedback process, in conjunction with the actual experimentation, gives the Marines the ability to use the technology and start seeing what it can do and, more specifically, what it can't do,” Hall said.

With the conclusion of third experiment, the CACI system is moving into Phase 2, which includes an updated system that can remain continuously operational for five or more hours. Lockheed Martin will conduct its next experiment in the fall of 2019.

CACI's BEAM system is already operational, and the Army has committed to continue its development at the completion of Squad X Phase 2. The Army is set to begin concurrent development of the Lockheed Martin ASSAULTS system in fiscal years 2019 and 2020, and then, independent of DARPA, in fiscal year 2021.

https://www.darpa.mil/news-events/2019-07-12

Sur le même sujet

  • Army picks 6 to work on autoloader for extended-range cannon

    27 janvier 2020 | International, Terrestre

    Army picks 6 to work on autoloader for extended-range cannon

    By: Jen Judson WASHINGTON — The Army has picked six companies to work on concepts and designs for an autoloader for the service's future Extended-Range Cannon Artillery (ERCA) program currently under development, according to a Jan. 24 Army Futures Command statement. While the first ERCA cannons will be fielded in fiscal 2023, the goal is to begin fielding the system with an autoloader just one year later. The companies — Actuate (formerly Aegis Systems, Inc.); Apptronik, Inc.; Carnegie Robotics LLC; Pratt & Miller Engineering; Neya Systems, LLC and Hivemapper, Inc. — will work under the Army Capability Accelerator and the Army Applications Laboratory (AAL) as part of the Field Artillery Autonomous Resupply (FAAR) “cohort” and will come up with novel, outside-of-the-box concepts for the autoloader. AAL is part of AFC, the Army's new four-star command in charge of rapid modernization that will align with the service's new developing doctrine. The cohort began work on Jan. 13 in Austin, Texas, where the AAL and AFC reside, and will wrap up work with capability presentations on April 2, the statement notes. “Sourced from across the country, the selected companies represent a range of technologies and expertise all aimed at developing autonomous resupply capabilities,” the statement reads. Among the companies selected, Actuate specializes in artificial intelligence focusing on computer vision software that turns any security camera into an “intruder- and threat-detecting smart camera," the release states. Apptronik is a robotics company spun out of the Human Centered Robotics Lab at the University of Texas at Austin. Pittsburgh-based Carnegie Robotics specializes in robotic sensors and platforms for defense, agriculture, mining, infrastructure and energy applications and was founded out of Carnegie Mellon University's National Robotics Engineering Center. Pratt & Miller's focus has been on addressing technology challenges in the motorsports, defense and mobility industries. Neya Systems, also from Pittsburgh, Pennsylvania, is another robotics company focused on advanced unmanned systems, off-road autonomy and self-driving vehicle technologies. The AAL has become the face of doing business with the Army in the startup community and has set up shop in the heart of Austin within an innovation incubator hub called the Capital Factory. Anyone can walk through an open garage door and pitch ideas to the Army and the service. But the Army is also going out to companies and trying to convey problems they need solved on the battlefield in the hopes of finding new and novel solutions. “Designed for small businesses and companies that don't typically work with the federal government, the program connects qualified companies that want to grow a new line of business into the DoD with Army stakeholders who want to speed capability development, transition to a program of record, or de-risk and inform requirements,” according to the statement. “We've spent the past year working to introduce commercial business models that translate to the Army and can help evolve its approach to capability development,” Porter Orr, product innovation lead at AAL, said. “We're helping nontraditional companies build a new line of business into the government. And that's important, but it's just as important that we're giving Army leaders a choice between writing a large check or doing nothing. This is a way for them to get more insight—more confidence—in a solution before purchasing it. That will mean a higher probability of success in the field.” Cohort participants receive $150,000 to complete a 12-week program ending in a pitch to the Army. FAAR is the pilot effort of likely many attempts to bring in non-traditional businesses to help solve some of the Army's problems both big and small. https://www.defensenews.com/land/2020/01/24/army-picks-6-to-work-on-autoloader-for-extended-range-cannon

  • The Army's M1 Abrams Tank Is About To Get Even Deadlier

    8 janvier 2019 | International, Terrestre, C4ISR

    The Army's M1 Abrams Tank Is About To Get Even Deadlier

    by Kris Osborn The Army is engineering new AI-enabled Hostile Fire Detection sensors for its fleet of armored combat vehicles to identify, track and target incoming enemy small arms fire. This system, integrated onto Apache Attack helicopters, uses infrared sensors to ID a “muzzle flash” or heat signature from an enemy weapon. The location of enemy fire could then be determined by a gateway processor on board the helicopter able to quickly geolocate the attack. The Army is engineering new AI-enabled Hostile Fire Detection sensors for its fleet of armored combat vehicles to identify, track and target incoming enemy small arms fire. Even if the enemy rounds being fired are from small arms fire and not necessarily an urgent or immediate threat to heavily armored combat vehicles such as an Abrams, Stryker or Bradley, there is naturally great value in quickly finding the location of incoming enemy small arms attacks, Army weapons developers explain. There are a range of sensors now being explored by Army developers; infrared sensors, for example, are designed to identify the “heat” signature emerging from enemy fire and, over the years, the Army has also used focal plane array detection technology as well as acoustic sensors. “We are collecting threat signature data and assessing sensors and algorithm performance,” Gene Klager, Deputy Director, Ground Combat Systems Division, Night Vision and Electronic Sensors Directorate, told Warrior Maven in an interview last year. Klager's unit, which works closely with Army acquisition to identify and at times fast-track technology to war, is part of the Army's Communications, Electronics, Research, Development and Engineering Center (CERDEC). Army senior leaders also told Warrior Maven the service will be further integrating HFD sensors this year, in preparation for more formals testing to follow in 2019. Enabling counterattack is a fundamental element of this, because being able to ID enemy fire would enable vehicle crews to attack targets from beneath the protection of an armored hatch. The Army currently deploys a targeting and attack system called Common Remotely Operated Weapons System, or CROWS; using a display screen, targeting sensors and controls operating externally mounted weapons, CROWS enables soldiers to attack from beneath the protection of armor. “If we get a hostile fire detection, the CROWS could be slued to that location to engage what we call slue to cue,” Klager said. Much of the emerging technology tied to these sensors can be understood in the context of artificial intelligence, or AI. Computer automation, using advanced algorithms and various forms of analytics, can quickly process incoming sensor data to ID a hostile fire signature. “AI also takes other information into account and helps reduce false alarms,” Klager explained. AI developers often explain that computer are able to much more efficiently organize information and perform key procedural functions such as performing checklists or identifying points of relevance; however, many of those same experts also add that human cognition, as something uniquely suited to solving dynamic problems and weighing multiple variables in real time, is nonetheless something still indispensable to most combat operations. Over the years, there have been a handful of small arms detection technologies tested and incorporated into helicopters; one of them, which first emerged as something the Army was evaluating in 2010 is called Ground Fire Acquisition System, or GFAS. This system, integrated onto Apache Attack helicopters, uses infrared sensors to ID a “muzzle flash” or heat signature from an enemy weapon. The location of enemy fire could then be determined by a gateway processor on board the helicopter able to quickly geolocate the attack. While Klager said there are, without question, similarities between air-combat HFD technologies and those emerging for ground combat vehicles, he did point to some distinct differences. “From ground to ground, you have a lot more moving objects,” he said. Potential integration between HFD and Active Protection Systems is also part of the calculus, Klager explained. APS technology, now being assessed on Army Abrams tanks, Bradleys and Strykers, uses sensors, fire control technology and interceptors to ID and knock out incoming RPGs and ATGMs, among other things. While APS, in concept and application, involves threats larger or more substantial than things like small arms fire, there is great combat utility in synching APS to HFD. Full article: https://nationalinterest.org/blog/buzz/armys-m1-abrams-tank-about-get-even-deadlier-40847

  • How does the Leopard 1A5 stack up against Russian armor?

    8 janvier 2024 | International, Terrestre

    How does the Leopard 1A5 stack up against Russian armor?

    Opinion: Proven in combat, the Leopard 1 was an effective Cold War-era main battle tank. However, many question its effectiveness and survivability in modern wars.

Toutes les nouvelles