30 avril 2024 | International, Sécurité

Millions of Malicious 'Imageless' Containers Planted on Docker Hub Over 5 Years

Millions of malicious "imageless" containers have been planted on Docker Hub over the past 5 years in multiple cybercriminal campaigns.

https://thehackernews.com/2024/04/millions-of-malicious-imageless.html

Sur le même sujet

  • Army Revs Up High-Tech Tank Engine

    13 décembre 2019 | International, Terrestre

    Army Revs Up High-Tech Tank Engine

    By SYDNEY J. FREEDBERG JR. WASHINGTON: Just outside Detroit, home of the muscle car, the Army's put together a powertrain as potent as three Trans Ams strapped together — with an electric stealth mode that sounds more like a lawnmower than a tank. The 1,000-horsepower Advanced Powertrain Demonstrator packs more diesel horsepower in less space than current engines, along with a 160-kilowatt generator that can power advanced electronics – like a drone-killing laser or anti-missile defenses – and even move an entire 50-ton vehicle for brief periods. Now installed in an M2 Bradley hull for testing, the current version of the APD can move war machines up to 50 tons, but it's meant to be easily modified for larger or smaller vehicles. “Each of the pieces can be scaled” up or down, said John Tasdemir, chief of the power & mobility branch of the Army's Ground Vehicle Systems Center (formerly TARDEC) in Warren, Mich. “It could not just fit a Bradley, it could fit a future vehicle, [or] it could fit a legacy vehicle as well.” Compact enough to fit into the notoriously cramped Bradley, the 1,000-horsepower Advanced Powertrain Demonstrator produces 48 percent more horsepower than the most-upgraded Bradley variant and 67 percent more than the standard 600-hp model. The engine could also fit the turretless utility variant of the Bradley, the Armored Multi-Purpose Vehicle, or, with some rearrangement of the components, the M109A7 Paladin howitzer. And since the design is modular, the APD could be scaled down to 500 hp – potentially powering the more tank-like of the Robotic Combat Vehicles the Army's now developing – or up to 1,500 hp – enough to drive the 70-ton M1 Abrams main battle tank. Another logical candidate for APD technology is the Optionally Manned Fighting Vehicle now in development to replace the Bradley. Fitting the new vehicle would require some redesign, said one of Tasdemir's engineers, Mike Claus, but if they could optimize the APD components for an all-new hull without the awkward compromises of the Bradley, the resulting design could be “way more compact.” How It Works Why is it important to be compact? Well, the heaviest part of a combat vehicle is its armor. The weight of the armor, in turn, is the product of its thickness and the surface area it has to protect. The bulkier you make your vehicle – the greater the “volume under armor,” in Army terms – the more tons of armor you need to get the same level of protection. To make the APD more compact, it needs to be more efficient. To do that, the Army and its contractors went to work on every piece of the powertrain – for example: In the diesel engine itself, built by Cummins, the pistons go through a two-stroke cycle instead of the usual four, allowing them to generate more horsepower with less waste heat from the same amount of gas. Historically, two-stroke engines are also highly polluting, which is why they've not been widely adopted, but the APD uses cutting-edge emissions controls. The SAPA drive-by-wire transmission replaces traditional, inefficient mechanisms like pumps with precisely engineered electromagnetic controls called solenoids. The transmission is in fact so attractive to other Army programs that they're considering installing it even without the rest of the APD powertrain. The cooling system replaces traditional filters – which wear out in 20 hours in dusty areas like deserts – with a Donaldson pulse-jet air cleaner that lasts 500 hours and provides much more airflow. Cooling armored vehicles is always challenging, even when they're not fighting in the desert, because they're basically metal boxes in which you want to punch as few holes as possible. The L3-Harris Integrated Starter-Generator produces 160 kW – many times the current alternator on the Bradley – but doesn't require its own dedicated cooling system, unlike traditional electronics. That's because it uses heat-resistant silicon carbide components that can function at 105 centigrade (hot enough to boil water), the same as the engine block. That electrical power is as important for modern combat vehicles as diesel horsepower. During the Iraq War, the Cold War-vintage Bradleys got upgraded with so many advanced sensors, communications networks, display screens, and radio jammers to deactivate roadside bombs that they couldn't power everything at once. Now, worried about Russia's vast arsenal of RPGs and anti-tank missiles, the Army is pushing to install so-called Active Protection Systems on its armored vehicles, which use compact radars to track incoming projectiles – a big power drain – so miniature missile launchers can shoot them down. And for the near future, the Army is highly interested in high-powered laser and microwave weapons, albeit primarily against fast-moving, fragile targets like drones and rockets rather than heavily armored vehicles like tanks. The Ground Vehicle Systems Center plans to test the APD powertrain on a stationary Bradley hull through this coming March, by which point they expect to have demonstrated what's called Technological Readiness Level (TRL) 6. Then they'll fully integrate the APD into a drivable Bradley, the Advanced Mobility Experimental Prototype (AMEP), which will be tested to TRL 7 or 8 – the highest level possible for a prototype – in 2022. The next year, 2023, the Army will hold the final competition to build the Bradley replacement, the OMFV. https://breakingdefense.com/2019/12/army-revs-high-tech-tank-engine

  • Lockheed wins $1.1B contract to design Navy’s Integrated Combat System

    1 octobre 2023 | International, Naval

    Lockheed wins $1.1B contract to design Navy’s Integrated Combat System

    The Navy is moving to a single combat system for all surface ships, which would allow for faster and easier upgrades.

  • Air Force looks for help on new, hard-to-jam, satellite waveform

    18 octobre 2018 | International, Aérospatial, C4ISR

    Air Force looks for help on new, hard-to-jam, satellite waveform

    By: Adam Stone In the face of a rising near-peer threat to electronic communications, the Air Force is pressing forward with efforts to develop a new, more resilient, harder-to-jam waveform that soldiers could use on the battlefield. The service expects to receive responses from industry soon on a recent request for information around protected satellite communications. The request sought industry guidance on how best to implement a new, more resilient protected tactical waveform (PTW), which enables anti-jamming capabilities within protected tactical SATCOM. “The Air Force is looking to protect our warfighter's satellite communications against adversarial electronic jamming,” the Air Force's Space and Missile Systems Center (SMC) said in a written statement to C4ISRNet. The threat comes from “adversarial electronic jammers that are intended to disrupt and interfere with U.S. satellite communications,” leaders at SMC said. Protected tactical SATCOM is envisioned to provide worldwide, anti-jam communications to tactical warfighters in benign and contested environments. The quest to solidify satellite communication links has taken on increasing urgency in recent years. As satellite communications has emerged as an integral component in the military's command and control infrastructure, potential adversaries have stepped up their ability to disrupt such links. “Tactical satellite communications are vital to worldwide military operations,” the agency noted. “Our adversaries know this and desire to disrupt U.S. satellite communications. The Air Force is fielding Protected Tactical SATCOM capabilities to ... ensure warfighters around the globe have access to secure and reliable communications.” Industry is expected to play a key role in the development and deployment of any new waveform. Officials at SMC said that early prototyping efforts will be conducted through the Space Enterprise Consortium (SpEC), which is managed by Advanced Technology International. SpEC acts as a vehicle to facilitate federally-funded space-related prototype projects with an eye toward increasing flexibility, decreasing cost and shortening the development lifecycle. The organization claims 16 prototype awards to date, with some $26 million in funding awarded. Understanding the protected tactical waveform Government documents describe PTW as the centerpiece of the broader protected tactical SATCOM effort, noting that it provides “cost-effective, protected communications over both military and commercial satellites in multiple frequency bands as well as broader protection, more resiliency, more throughput and more efficient utilization of satellite bandwidth.” A flight test last year at Hansom Air Force Base suggested the emerging tool may soon be ready to deliver on such promises. While SMC leads the PTW effort, Hanscom is working in collaboration with MIT Lincoln Laboratory and the MITRE Corp. to conduct ground and airborne terminal work. Researchers from MIT's Lincoln Laboratory flew a Boeing 707 test aircraft for two and a half hours in order to use the waveform in flight. With a commercial satellite, officials gathered data on the PTW's ability to operate under realistic flight conditions. “We know this capability is something that would help our warfighters tremendously, as it will not only provide anti-jam communications, but also a low probability of detection and intercept,” Bill Lyons, Advanced Development program manager and PTW lead at Hanscom, said in an Air Force news release. The test scenario called for the waveform to perform in an aircraft-mounted terminal. Evaluators were looking to see whether its systems and algorithms would function as expected in a highly mobile environment. “Everything worked and we got the objectives accomplished successfully,” Ken Hetling, Advanced Satcom Systems and Operations associate group leader at Lincoln Laboratory, said in an Air Force press release. “The waveform worked.” Asking for industry input should help the service to chart its next steps in the development of more protections. While the request does not specify when or how the Air Force intends to move forward, it is clearly a matter not of whetherthe military will go down this road, but rather when and how. https://www.c4isrnet.com/c2-comms/satellites/2018/10/05/air-force-looks-for-help-on-new-hard-to-jam-satellite-waveform/

Toutes les nouvelles