27 mai 2024 | International, Terrestre

Major order for ammunition: NATO customer orders artillery ammunition from Rheinmetall – worth almost €300m

The total gross value of the orders booked in the second quarter of 2024 amounts to almost €300 million

https://www.epicos.com/article/835704/major-order-ammunition-nato-customer-orders-artillery-ammunition-rheinmetall-worth

Sur le même sujet

  • Is this the new wave of submerged communications?

    29 août 2018 | International, C4ISR

    Is this the new wave of submerged communications?

    By: Kelsey Atherton The ocean hides what it contains, and it is in that hiding that submarines have their power. Lurking under seas, at first with just enough capability for an attack run and now with the ability to lurk for months at a time, submarines remain power out of reach, unseen until engaged in combat or resupplying in a friendly port. That stealth comes at a cost, however, besides the simple perils of existing underwater. When submerged, submarines are more or less on their own until they resurface again, since radio waves do not travel well through seawater. Or they are for now. New research by MIT, presented at a conference in late August, devised a way for submerged submarines to communicate wirelessly with people on the surface by combining hydroacoustics and acoustic radars. Presently, submarines communicate either across normal radio frequencies when surfaced or through hydroacoustic signals and listening posts underwater that can transmit the messages back to counterparts on shore. Very and extremely low-frequency radio waves can be transmitted in a way that submarines can listen to below the surface, but it's a one-way form of communication, from stations on land to submarines. To get something responsive, with the flexibility to communicate away from static seabed hydrophones, needs something else. Specifically, it needs a way to combine hydroacoustic transmission from the submarine through water that can then be converted into a useful data. “We present a new communication technology, translational acoustic-RF communication (TARF),” write paper authors Francesco Tonolini and Fadel Adib of the MIT Media Lab. “TARF enables underwater nodes to directly communicate with airborne nodes by transmitting standard acoustic signals. TARF exploits the fact that underwater acoustic signals travel as pressure waves, and that these waves cause displacements of the water surface when they impinge on the water-air boundary. To decode the transmitted signals, TARF leverages an airborne radar which measures and decodes these surface displacements.” In testing, they demonstrated that the communication technique can transfer data at standard underwater bitrates up to 400bps, and even do so with surface waves 6.3 inches crest-to-crest, or 100,000 times larger than the surface perturbations made by the acoustic transmitter. Right now, this communication is one-way. While the signal transmitted up from the water produces useful information at the boundary with the air, a signal transmitted through the air downwards would disintegrate on integration with water. This one-way is distinct from previous forms of communication with submarines, however, as it lets the submarine talk without revealing its position to surface sensors. Despite the limitations, and the earlierness of the research, Tonolini and Adlib see a bright future for the technology, as a way to enable a host of new technology in machines. The technology, they write, can enable “many applications including submarine-to-drone communication, deep-sea exploration, and subsea IoT (Internet of Things). https://www.c4isrnet.com/c2-comms/2018/08/28/mit-discovers-way-for-submarines-to-talk-to-drones

  • Carderock Uses High-Fidelity Signature Simulation to Train Surface Combat Systems

    5 août 2019 | International, C4ISR

    Carderock Uses High-Fidelity Signature Simulation to Train Surface Combat Systems

    By Benjamin McNight III, Naval Surface Warfare Center, Carderock Division Public Affairs WEST BETHESDA, Md. (NNS) -- In the world of simulations, getting a system to act as close to authentic as the real-world situations it represents is always the main goal. Naval Surface Warfare Center (NSWC), Carderock Division develops high-fidelity acoustic simulation and training systems, giving naval personnel the ability to practice combat scenarios virtually. The Combined Integrated Air and Missile Defense (IAMD) and Anti-Submarine Warfare (ASW) Trainer, better known as CIAT, made its official debut in December 2018 at Naval Base San Diego. In June, Naval Station Norfolk became the site for another CIAT installation. Motions to create this trainer began in 2014, according to Rich Loeffler, Carderock's senior scientific technical manager, director for signatures, tactical decision aids and training systems (Code 705). “CIAT is what we refer to as a Combat Systems Team Trainer,” Loeffler said. “Meaning that your goal is to bring in the whole portion of the crew that would be operating the combat system and train them in a shore site how they can best utilize the system when they are at sea.” Carderock shares CIAT responsibilities with NSWC Dahlgren Division. Dahlgren is responsible for the overall system integration and manages the IAMD aspect of the trainer, while Carderock leads the development of the acoustic and ASW capabilities. Carderock also has capabilities that contribute to the IAMD training. Using the periscope simulation that creates a real-time visual simulation of what one could see through the periscope of a submarine, Loeffler said they were able to utilize that technology for the surface ship trainer in the CIAT. “In this case, they have deck cameras if they want to be able to see when a missile launches from the forward or aft launchers. We basically provide the visuals for that,” he said. By modeling the threats and the ocean environment and then stimulating the actual tactical combat system software, the CIAT system is highly flexible in the ability to train real-world scenarios. With the many possibilities of training situations that can be created within the CIAT comes the need to use multiple sources of knowledge to create effective training situations that will benefit the fleet. “We'll work with people like the Office of Naval Intelligence to get threat intelligence data, we'll work with folks like the Naval Oceanographic Office to get the latest environmental models and databases, and then we'll work with the tactical programs themselves to get the tactical software,” Loeffler said. “Our role here at Carderock has been to leverage signature simulation capabilities we have developed over the years across submarine, surface and surveillance ASW trainers and provide the system design, development, integration and testing support to implement the CIAT requirement to support the fleet's training needs,” he said. Before the CIAT existed, the Surface ASW Synthetic Trainer (SAST) was developed by Carderock as an on-board embedded training system within the AN/SQQ-89 A(V)15 Sonar system. Loeffler said beginning in 2008, they went through a series of large analyses to compare and contrast what the simulation produced with what operators saw at sea. The data from that testing helped further develop the SAST and subsequently create the CIAT. Now, they are able to represent all components of the operations they run from the physics modeling perspective, such as what sounds are generated and how they propagate through the water, interactions with interfering objects and sea-state effects on these variables. “Since we're acoustically stimulating the actual tactical software of the sonar system, the users are operating the systems just as they would at sea,” he said. Loeffler believes that there is not anything off limits for what the CIAT can do, but adapting with new threats will require the right development within the trainer to represent the real-world situation. Although the system is relatively new, discussions on the next steps in the development of the trainer are already taking place with the help of Center for Surface Combat Systems (CSCS) defining and prioritizing fleet training requirements “CSCS is basically the primary stakeholder that owns the surface-ship training schoolhouses, and they've done their requirements review to see what additional capabilities they'd like to see in the next version of CIAT,” Loeffler said. “So, we're going through that process, assessing those requirements and looking for what would go into the next version to further improve training and also address training of the new combat system capabilities as they are being introduced into the fleet.” https://www.navy.mil/submit/display.asp?story_id=110471

  • Goodbye, dials: Digital avionics coming to aging US Air Force C-130s

    18 octobre 2023 | International, Aérospatial

    Goodbye, dials: Digital avionics coming to aging US Air Force C-130s

    The C-130H's avionics modernization will replace its old analog gauges with digital displays, as well as an array of other navigation and flight upgrades.

Toutes les nouvelles