1 octobre 2018 | International, Naval

LOCKHEED MARTIN CONTRACT TO MARRY MACHINE LEARNING WITH 3-D PRINTING FOR MORE RELIABLE PARTS

U.S. Navy research contract could make complex metal additive manufacturing a reality both in production centers and deep in the field

DENVER, Oct. 1, 2018 /PRNewswire/ -- Today, 3-D printing generates parts used in ships, planes, vehicles and spacecraft, but it also requires a lot of babysitting. High-value and intricate parts sometimes require constant monitoring by expert specialists to get them right. Furthermore, if any one section of a part is below par, it can render the whole part unusable. That's why Lockheed Martin (NYSE: LMT) and the Office of Naval Research are exploring how to apply artificial intelligence to train robots to independently oversee—and optimize—3-D printing of complex parts.

The two-year, $5.8 million contract specifically studies and will customize multi-axis robots that use laser beams to deposit material. The team will develop software models and sensor modifications for the robots to build better components.

  • Lockheed Martin Metal 3D printer

"We will research ways machines can observe, learn and make decisions by themselves to make better parts that are more consistent, which is crucial as 3-D printed parts become more and more common," said Brian Griffith, Lockheed Martin's project manager. "Machines should monitor and make adjustments on their own during printing to ensure that they create the right material properties during production."

Researchers will apply machine learning techniques to additive manufacturing so variables can be monitored and controlled by the robot during fabrication.

"When you can trust a robotic system to make a quality part, that opens the door to who can build usable parts and where you build them," said Zach Loftus, Lockheed Martin Fellow for additive manufacturing. "Think about sustainment and how a maintainer can print a replacement part at sea, or a mechanic print a replacement part for a truck deep in the desert. This takes 3-D printing to the next, big step of deployment."

Currently, technicians spend many hours per build testing quality after fabrication, but that's not the only waste in developing a complex part. It's common practice to build each part compensating for the weakest section for a part and allowing more margin and mass in the rest of the structure. Lockheed Martin's research will help machines make decisions about how to optimize structures based on previously verified analysis.

That verified analysis and integration into a 3-D printing robotic system is core to this new contract. Lockheed Martin, along with its strong team, will vet common types of microstructures used in an additive build. Although invisible from the outside, a part could have slightly different microstructures on the inside. The team will measure the performance attributes of the machine parameters, these microstructures and align them to material properties before integrating this knowledge into a working system. With this complete set of information, machines will be able to make decisions about how to print a part that ensures good performance.

The team is starting with the most common titanium alloy, Ti-6AI-4V, and integrating the related research with seven industry, national lab and university partners.

About Lockheed Martin
Headquartered in Bethesda, Maryland, Lockheed Martin is a global security and aerospace company that employs approximately 100,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services. This year the company received three Edison Awards for ground-breaking innovations in autonomy, satellite technology and directed energy.

SOURCE Lockheed Martin

https://news.lockheedmartin.com/2018-10-01-Lockheed-Martin-Contract-to-Marry-Machine-Learning-with-3-D-Printing-for-More-Reliable-Parts

Sur le même sujet

  • Saab Secures U.S. AT4 and Carl-Gustaf Ammunition Order

    19 septembre 2023 | International, Terrestre

    Saab Secures U.S. AT4 and Carl-Gustaf Ammunition Order

    The extension will allow the U.S. customer to place orders of Saab’s world-leading close combat solutions for up to an additional USD 422 million.

  • The Army wants a self-directed combat vehicle to engage enemies

    7 décembre 2018 | International, Terrestre, C4ISR

    The Army wants a self-directed combat vehicle to engage enemies

    By: Adam Stone While the commercial world tiptoes toward the notion of a self-driving car, the military is charging forward with efforts to make autonomy a defining characteristic of the battlefield. Guided by artificial intelligence, the next-generation combat vehicle now in development will have a range of autonomous capabilities. Researchers at Army's Communications-Electronics Research, Development and Engineering Center (CERDEC) foresee these capabilities as a driving force in future combat. “Because it is autonomous, it can be out in front to find and engage the enemy while the soldiers remain safely in the rear,” said Osie David, chief engineer for CERDEC's mission command capabilities division. “It can draw fire and shoot back while allowing soldiers to increase their standoff distance.” Slated to come online in 2026, the next-gen combat vehicle won't be entirely self-driving. Rather, it will likely include a combination of autonomous and human-operated systems. To realize this vision, though, researchers will have to overcome a number of technical hurdles. Getting to autonomy An autonomous system would need to have reliable access to an information network in order to receive commands and relay intel to human operators. CERDEC's present work includes an effort to ensure such connections. “We need resilient comms in really radical environments — urban, desert, trees and forests. All those require new and different types of signal technologies and communications protocols,” David said. Developers also are thinking about the navigation. How would autonomous vehicles find their way in a combat environment in which adversaries could deny or degrade GPS signals? “Our role in this is to provide assured localization,” said Dr. Adam Schofield, integration systems branch chief for the positioning, navigation and timing (PNT) division. In order for autonomous systems to navigate successfully, they've got to know where they are. If they rely solely on GPS, and that signal gets compromised, “that can severely degrade the mission and the operational effectiveness,” he said. CERDEC, therefore, is developing ways to ensure that autonomous systems can find their way, using LIDAR, visual cues and a range of other detection mechanisms to supplement GPS. “We want to use all the sensors that are on there to support PNT,” Schofield said. In one scenario, for example, the combat vehicle might turn to an unmanned air asset for ISR data in order to keep itself oriented. “As that UAV goes ahead, maybe it can get a better position fix in support of that autonomous vehicle,” he said. Even as researchers work out the details around comms and navigation, they also are looking to advances in artificial intelligence, or AI, to further empower autonomy. The AI edge AI will likely be a critical component in any self-directed combat vehicle. While such vehicles will ultimately be under human control, they will also have some capacity to make decisions on their own, with AI as the software engine driving those decisions. “AI is a critical enabler of autonomy,” said CERDEC AI expert Dr. Peter Schwartz. “If autonomy is the delegation of decision-making authority, in that case to a robotic system, you need some confidence that it is going to make the right decision, that it will behave in a way that you expect.” AI can help systems to reach that level of certainty, but there's still work to be done on this front. While the basics of machine learning are well-understood, the technology still requires further adaptation in order to fulfill a military-specific mission, the CERDEC experts said. “AI isn't always good at detecting military things,” David said. “It may be great at recognizing cats, because people post millions of pictures of cats on the internet, but there isn't an equally large data set of images of adversaries hiding in bushes.” As AI strategies evolve, military planners will be looking for techniques that enable the computer to differentiate objects and actions in a military-specific context. “We need special techniques and new data sets in order to train the AI to recognize these things in all different environments,” he said. “How do you identify an enemy tank and not confuse that with an ordinary tractor trailer? There has to be some refinement in that.” Despite such technical hurdles, the CERDEC team expressed confidence that autonomy will in fact be a central feature of tomorrow's ISR capability. They say the aim is create autonomous systems that can generate tactical information in support of war-fighter needs. “As we are creating new paradigms of autonomy, we want to keep it soldier-centric,” David said. “There is filtering and analyzing involved so you don't overwhelm the user with information, so you are just providing them with the critical information they need to make a decision.” https://www.c4isrnet.com/unmanned/2018/11/30/the-army-wants-a-self-directed-combat-vehicle-to-engage-enemies

  • U.S. Air Force Launches Three-Year Fielding Plan For Skyborg Weapons

    31 juillet 2020 | International, Aérospatial

    U.S. Air Force Launches Three-Year Fielding Plan For Skyborg Weapons

    Steve Trimble July 07, 2020 The next combat aircraft to enter the U.S. Air Force inventory will not be a manned sixth-generation fighter or even the Northrop Grumman B-21. By fiscal 2023, the Air Force expects to deliver the first operational versions of a new unmanned aircraft system (UAS) called Skyborg, a provocative portmanteau blending the medium of flight with the contraction for a cybernetic organism. The Skyborg family of aircraft is expected to fill an emerging “attritable” category for combat aircraft that blurs the line between a reusable UAS and a single-use cruise missile. July 8 award date for Skyborg contracts Leidos is managing autonomy mission system As the aircraft are developed, Skyborg also will serve as the test case of a radical change in acquisition philosophy, with ecosystems of collaborative software coders and aircraft manufacturers replacing the traditional approach with a supply chain defined by a single prime contractor. The Air Force also plans to manage the Skyborg aircraft differently than other UAS. Although Air Combat Command (ACC) is considering the Skyborg family as a replacement for pre-Block F-16s after 2025 and MQ-9s after 2030, the aircraft is not likely to fit neatly into an existing force structure with dedicated Skyborg squadrons. “Even though we call Skyborg an attritable aircraft, I think we'll think of them more like reusable weapons,” says Will Roper, assistant secretary of the Air Force for acquisition, technology and logistics. The Skyborg is an attritable weapon, which means key components such as the jet engine will be designed with a short service life. Credit: AFRL via YouTube The Skyborg propulsion systems—including expendable subsonic and supersonic jet engines—will be rated with a fraction of the service life expected of a fully reusable UAS or manned aircraft. “We'll do whatever number of takeoffs and landings they're ‘spec'd' for, and then we'll attrit them out of the force as targets and just buy them at a steady rate,” Roper says. Starting in fiscal 2023, a concept of operations for a formation of four Lockheed Martin F-22s will include Skyborgs as part of the manned aircraft's load-out. “I expect that the pilots, depending on the mission, [will] decide: Does the Skyborg return and land with them and then go to fight another day, or is it the end of its life and it's going to go on a one-way mission?” Roper explains. In some cases, the pilot may decide a target is important enough that it is worth the loss of a Skyborg, even if its service life has not been used up, he adds. As the concept evolves, a diverse array of Skyborg aircraft designs will likely find roles beyond the air combat community, Roper says. “I don't think it'll just be fighters,” he says. “I think they'll fly with bombers. I think they'll fly with tankers to provide extra defensive capability. That's what I love about their versatility and the fact that we can take risks with them.” Skyborg is often presented as the epitome of the “loyal wingman” concept, in which one or multiple UAS are controlled or managed by a manned aircraft to perform a variety of surveillance, support and strike tasks during a mission. But the aircraft also could have the ability to operate independently of a manned aircraft, with the capability to launch and recover hundreds of such systems without the need for runways or even bases. The Kratos XQ-58A, which achieved first flight in March 2019, is one of several potential members of the Skyborg UAS family. Credit: U.S. Air Force “If [China and Russia] know that they have to target only tens or even hundreds of ports and airfields, we have simplified their problem,” says ACC chief Gen. Mike Holmes. The new class of attritable aircraft, he says, are designed so that “we can still provide relevant high-tempo combat power to be freed up from a runway.” If Skyborg is the future, it begins on July 8. The Air Force Research Laboratory (AFRL) is due on the second Wednesday of this month to award a contract to start developing the first in a family of experimental UAS bearing the name Skyborg. The AFRL already has a stable of potential concepts. The Kratos XQ-58A Valkyrie, which has flown four times since March 2019, is the most visible example of the AFRL's Low-Cost Attritable Aircraft Technology platform. Meanwhile, the Low-Cost Attritable Aircraft Platform--Sharing project quietly kept several UAS industry leaders involved in design studies, including Boeing, General Atomics Aeronautical Systems Inc., Lockheed Martin and Northrop Grumman. Each company selected will be awarded a contract with a maximum value of $400 million over a five-year ordering period. But the core of the Skyborg program is the software; specifically, the military aviation equivalent of the algorithm-fed convolutional neural networks that help driverless cars navigate on city streets. In announcing Leidos on May 18 as the Skyborg Design Agent (SDA), the AFRL selected the same company that delivered the software “brain” of the Navy's Sea Hunter unmanned surface vehicle, which navigated from San Diego to Honolulu in 2018. As SDA, Leidos' role is to deliver a software core that uses artificial intelligence to learn and adapt as the aircraft flies. The autonomy mission system core—as integrated by Leidos from a combination of industry and government sources—will be inserted into multiple low-cost UAS designed by different companies, with each configured to perform a different mission or set of missions. That is how the Skyborg program is set up today, but that is not how it started. Roper created the original “Skyborg” term and concept when he led the Strategic Capabilities Office within the Office of the Secretary of Defense in 2012-17. Roper transferred Skyborg to the AFRL, where it was renamed Avatar. A year after taking over Air Force acquisition in 2017, Roper changed the name back to Skyborg and created a program office in October 2018. In March 2019, Roper revealed the Skyborg concept to a group of reporters a week before the AFRL issued the first request for information to industry about the program. At that time, Skyborg was still organized more traditionally, with plans to select a single contractor to serve as a prime integrator. By early 2020, program officials reorganized Skyborg into modular hardware and software subcomponents built on an open architecture that requires no prime integrator. As the acquisition strategy has evolved, so has the Air Force's thinking about how to use the Skyborg family of systems. “The whole idea was [that] the contested environment is going to be challenging, it's going to be uncertain, and so it makes the most sense to have something that doesn't have a pilot in it to go into the battlefield first,” Roper says. “But once you agree that's a self-evident operational concept, it opens up the door for a lot of nontraditional thinking for the Air Force.” After a 2-3 year experimental phase, the AFRL plans to deliver an early operational capability in fiscal 2023. Follow-on operational Skyborgs could be funded within the Next-Generation Air Dominance (NGAD) project or through a separate program of record. The Skyborg concept even has links to the Air Force's architecture for the Advanced Battle-Management System (ABMS). “Attritable-ONE,” which is defined as having “multirole attritable capabilities,” is one of about 30 product lines in the ABMS architecture. “Skyborg and the AttritableONE teams are closely coordinated for planning and collaboration purposes,” the AFRL informed industry in response to questions about the Skyborg solicitation. The aircraft supplier must deliver a highly flexible design. Leidos, the design agent, will provide the autonomous mission system that will serve as the pilot, flight control computer and mission systems operator for the aircraft. But the “size, weight, power and cooling details for the Skyborg core autonomy system have not been finalized,” the AFRL told the bidding companies. “The majority of the system will be software-based and integrate with the sensors onboard the host aircraft,” the AFRL says. “Extensive collaboration between the Skyborg system design agent and the participants in this [contract] is expected.” https://aviationweek.com/ad-week/us-air-force-launches-three-year-fielding-plan-skyborg-weapons

Toutes les nouvelles