18 août 2020 | International, Terrestre, C4ISR

Kratos Targets Ground System ‘Revolution’

We think that p-LEO is a big deal. And there's got to be a revolution that has to hit the ground segment, says Phil Carrai, president of Kratos's space, training and cyber division.

By on August 17, 2020 at 1:20 PM

WASHINGTON: As DoD and commercial industry scramble to develop small satellite constellations in Low Earth Orbit for everything from high-speed communications to near-real time Earth observation, Kratos is quietly working to solidify a central role providing the new ground systems required to make them work.

While there is enormous military and commercial interest in the proliferation of small LEO satellites, known as p-LEO, not nearly as much attention has been paid to the radically different ground-based infrastructure to support those constellations. But the necessary changes in ground architecture will be monumental, and extremely lucrative for those companies at the crest of that wave.

“We think that p-LEO is a big deal. And there's got to be a revolution that has to hit the ground segment,” says Phil Carrai, president of Kratos' space, training and cyber division. “We think this is kind of our play for the next many years. ... We've been making some substantial investments in that, in the sense of taking what was analog and stovepiped and moving it into a digital, dynamic, cloud infrastructure.”

Kratos, headquartered in San Diego, is a mid-tier company with $750- to $800 million in annual revenue, and is perhaps best known in the defense arena right now for its low-cost attritable drones. Its XQ-58A Valkyrie is one of the top contenders for the Air Force's high-profile Skyborg program to build autonomous drones that can mate with piloted aircraft for a variety of missions; it also is providing an airframe, based on its Mako UTAP-22, as a subcontractor to Dynetics in DARPA's Gremlins program to develop drone swarms.

But space-related work is the firm's bread and butter. Kratos' space, training and cyber Division is the company's biggest, Carrai said, with a large, but often behind-the-scenes, footprint in both the military and commercial satellite communications markets.

Indeed, while Valkyrie's role in the Air Force's Advanced Battle Management System (ABMS), which is developing new technologies to support command and control of future all-domain operations, has been well documented, Kratos space-related comms systems and ground equipment are actually playing a bigger part as subsystems within many other company's offerings, company officials explained in a teleconference with Breaking D.

“Our space portfolio really is all about communications and the ground segment, if you will, so that's been our heritage,” Carrai said. “Probably 90 percent of US satellite missions use our technology in one form or fashion. So, we are rather unique in the sense that we can claim the US Air Force and SMC [Space and Missile Systems Center] as one of our largest customers, and, probably in our top 10 or top five, Intelsat and SES are also very large customers.”

The advent of 5G mobile telecommunications networks, and its promise of hyper-connectivity through the Internet of Things including from space, has mesmerized DoD and the Intelligence Community, as well as industry. The chief benefit of tying together satcom and wireless and terrestrial networks, for both national security and commercial communications, is expanded reach to hard-to-access areas. For example, satellite signals have trouble penetrating areas like ‘urban canyons'; laying fiber and erecting cell-towers in rural and harsh terrain such as mountainous regions is very costly if not impossible, but satellite communications is relatively simple.

The challenge is integrating currently incompatible (in more ways than one) and heavily stovepiped networks in a seamless fashion that allows near-instantaneous roaming among them. That is why the ground system issue is so important.

“We think that there's a substantial change that needs to take place from the ground perspective,” Carrai said. Not only will there need to be “way more sites” to connect to fast-moving LEO satellites due to the simple laws of physics, but satellite ground stations will need to be configured more like terrestrial communications nodes with machine-to-machine operations ensuring the best link to any one satellite at a given place or time.

Chris Badgett, Kratos VP for Technology, explained that this kind of “dynamic resource allocation or that dynamic situational awareness” is particularly important to military users in order to provide jam-proof communications. In essence, this would allow a military radio to ‘jump' from one frequency being jammed to another that is open. Today, if ‘changing the channel' is possible, it is up to a solider or sailor or Marine to figure that out and manually flip switches. The ultimate goal is to automate that frequency and network ‘hopping' capability so that users don't even notice that it's being done.

The mess that is the world of DoD satcom terminals is a long-standing sore-thumb for operators, particularly in the Army. As Breaking D readers know, DoD currently maintains 17,000 terminals with “approximately 135 different designs,” as the Government Accountability office found. Those terminals operate across diverse platforms—such as ships, backpacks, vehicles and aircraft — all with differing system requirements, so that for the most part each terminal system (i.e. each type of radio) is tied to only one satellite network and one type of platform.

And while fixing the current problem is already a Herculean task, it could be a show-stopper to Dod's vision of future all-domain operations, linking sensors and shooters provided by all the services together via a Joint All-Domain Command and Control (JADC2) network.

“The major obstacle that we have from a ground system standpoint is the current ground architectures have all been designed and developed in a very stove-piped and mission-specific sense. And so each ground system was designed for the mission that it was supporting,” said Frank Backes, senior VP for Kratos Space Federal Solutions. “Where we're going now with a joint, or combined, capability is the integration of those ground systems. And therein lies the complexity.

“How do you take a legacy-based architecture that was very stovepipe designed and integrate it together into a common system that gives you enterprise-wide control of the infrastructure, and also gives you the awareness of all the systems? It's very easy to become overwhelmed in the information that a combined system provides,” Backe added.

As Breaking D readers know, sorting out those answers is what Gen. Jay Raymond, head of the Space Force, set out to do with his Vision for Enterprise Satellite Communications (SATCOM). That is aimed at creating a seamless network of military and commercial communications satellites in all orbits, accessible to troops, vehicles, ships and aircraft via ground terminals and mobile receivers that would automatically “hop” from one satellite network to another.

Carrai said Kratos believes that ultimately the “current analog stovepipe infrastructure that exists today” must simply be replaced. What is needed for integrated satcom is “a roaming modem or a roaming terminal,” and the ability to integrate satellite-provided imagery into the network, a “kind of a virtual antenna.”

“If you don't have that capability, you're not going to be resilient, it's going to cost a lot of money, and you're going to create a huge exposure because everybody's going to know what antennas are used for what purpose,” he added.

All that said, Carrai opined that partly because of push from the Space Force, the stovepipe problem with milsatcom networks is beginning to change. “It's still a struggle,” he said, because “there's a lot of drive from the spacecraft manufacturers to link the ground system with it. You know, that's what makes it a multibillion dollar system.”

In addition, he said, the scramble by commercial satcom operators to get on the 5G bandwagon is forcing them to figure out how to open up proprietary networks. “Commercial operators all see that 5G and data is their future, not broadcast, he said. “The commercial operators are going to lead if not the defense side because they have to interoperate with the telecom operators if they're going to survive.”

https://breakingdefense.com/2020/08/kratos-targets-ground-system-revolution

Sur le même sujet

  • L3Harris moves to acquire Aerojet Rocketdyne

    19 décembre 2022 | International, Aérospatial

    L3Harris moves to acquire Aerojet Rocketdyne

    L3Harris, the country’s sixth largest defense contractor, plans to acquire propulsion expert Aerojet Rocketdyne in a deal valued at $4.7 billion.

  • £30-million injection for UK’s first uncrewed fighter aircraft

    26 janvier 2021 | International, Aérospatial

    £30-million injection for UK’s first uncrewed fighter aircraft

    The UK's first fleet of uncrewed fighter aircraft is one step closer to reality following a £30-million contract to design and manufacture a prototype in a three-year deal supporting more than 100 jobs in Belfast. Published 25 January 2021 From: Ministry of Defence, Northern Ireland Office, Defence Science and Technology Laboratory, The Rt Hon Brandon Lewis MP, and Jeremy Quin MP The uncrewed combat aircraft will be designed to fly at high-speed alongside fighter jets, armed with missiles, surveillance and electronic warfare technology to provide a battle-winning advantage over hostile forces. Known as a ‘loyal wingman', these aircraft will be the UK's first uncrewed platforms able to target and shoot down enemy aircraft and survive against surface to air missiles. In a boost for Northern Ireland's defence industry, Spirit AeroSystems, Belfast, have been selected to lead Team MOSQUITO in the next phase of the Project. Utilising ground-breaking engineering techniques, the team will further develop the RAF's Lightweight Affordable Novel Combat Aircraft (LANCA) concept, with a full-scale vehicle flight-test programme expected by the end of 2023. Northern Ireland Secretary, Brandon Lewis said: This is fantastic news and underlines the distinct strengths in Northern Ireland's economy, through its advanced engineering and manufacturing capabilities. This ground-breaking project will involve significant investment which will not only support local employment, but also reinforce Northern Ireland's contribution to the security of our nation. Team MOSQUITO, which also includes Northrop Grumman UK, will mature the designs and manufacture a technology demonstrator to generate evidence for a follow-on LANCA programme. If successful, Project Mosquito's findings could lead to this revolutionary capability being deployed alongside the Typhoon and F-35 Lightning jets by the end of the decade. Defence Minister, Jeremy Quin said: This is a great win for the Northern Ireland defence industry and will showcase some of the most pioneering engineering work currently being undertaken in the UK. The £30 million project will accelerate the development of the UK's future air power by delivering cutting-edge uncrewed aircraft, maintaining our position as a world leader in emerging technologies. Working with innovative partners from across the UK, Project Mosquito is transforming traditional approaches to combat air to enable the rapid development of technology. By utilising the latest software development techniques and civilian aerospace engineering and manufacturing expertise, the project will deliver dramatic reductions in costs and development timelines, so their innovations can reach the front-line quicker than ever before. This game changing research and development project will ensure the final aircraft design will be capable of being easily and affordably updated with the latest technology so we remain one step ahead of our adversaries. The aircraft's flexibility will provide the optimum protection, survivability and information as it flies alongside Typhoon, F-35 Lightning, and later, Tempest as part of our future combat air system. Air Chief Marshal Mike Wigston, Chief of the Air Staff said: We're taking a revolutionary approach, looking at a game-changing mix of swarming drones and uncrewed fighter aircraft like Mosquito, alongside piloted fighters like Tempest, that will transform the combat battlespace in a way not seen since the advent of the jet age. Director Future Combat Air, Richard Berthon said: Project Mosquito is a vital element of our approach to Future Combat Air, rapidly bringing to life design, build and test skills for next generation combat air capabilities. Autonomous ‘loyal wingman' aircraft create the opportunity to expand, diversify and rapidly upgrade Combat Air Forces in a cost-effective way, now and in the future. As announced by the Prime Minister in November 2020, the UK's Future Combat Air System (FCAS) programme is set to benefit from a portion of the extra £1.5 billion investment into military research and development, which will help ensure our Armed Forces are prepared to meet the threats of tomorrow. LANCA originated in 2015 in Dstl to understand innovative Combat Air technologies and concepts that offer radical reductions in cost and development time and is a RAF Rapid Capabilities Office led project under the Future Combat Air System Technology Initiative (FCAS TI). The UK MOD's Defence Science and Technology Laboratory (Dstl) provides the project management and is the MOD's technical authority for LANCA and Project Mosquito on behalf of the RCO. https://www.gov.uk/government/news/30m-injection-for-uks-first-uncrewed-fighter-aircraft

  • U.S.A.F. to Upgrade Two-decade-old Modified F-16 to Support Automomous Testing

    5 août 2021 | International, Aérospatial

    U.S.A.F. to Upgrade Two-decade-old Modified F-16 to Support Automomous Testing

    U.S.A.F. to Upgrade Two-decade-old Modified F-16 to Support Automomous Testing

Toutes les nouvelles